The NLP Index

Magical Software ⚡

Total repos: 8,116
hits:
time: ms
Added Title Abstract Authors Paper Graph Code
5/21/2023 OpenAssistant Conversations -- Democratizing Large Language Model Alignment
Aligning large language models (LLMs) with human preferences has proven to drastically improve usability and has driven rapid adoption as demonstrated by ChatGPT. Alignment techniques such as supervised fine-tuning (SFT) and reinforcement learning from human feedback (RLHF) greatly reduce the required skill and domain knowledge to effectively harness the capabilities of LLMs, increasing their accessibility and utility across various domains. However, state-of-the-art alignment techniques like RLHF rely on high-quality human feedback data, which is expensive to create and often remains proprietary. In an effort to democratize research on large-scale alignment, we release OpenAssistant Conversations, a human-generated, human-annotated assistant-style conversation corpus consisting of 161,443 messages distributed across 66,497 conversation trees, in 35 different languages, annotated with 461,292 quality ratings. The corpus is a product of a worldwide crowd-sourcing effort involving over 13,500 volunteers. To demonstrate the OpenAssistant Conversations dataset's effectiveness, we present OpenAssistant, the first fully open-source large-scale instruction-tuned model to be trained on human data. A preference study revealed that OpenAssistant replies are comparably preferred to GPT-3.5-turbo (ChatGPT) with a relative winrate of 48.3% vs. 51.7% respectively. We release our code and data under fully permissive licenses.
Andreas Kopf, Yannic Kilcher, Dimitri von Rutte, Sotiris Anagnostidis, Zhi-Rui Tam, Keith Stevens, Abdullah Barhoum, Nguyen Minh Duc, Oliver Stanley, Richard Nagyfi, Shahul ES, Sameer Suri, David Glushkov, Arnav Dantuluri, Andrew Maguire, Christoph Schuhmann, Huu Nguyen, Alexander Mattick
33026
Python
5/21/2023 Efficient and Effective Text Encoding for Chinese LLaMA and Alpaca
Large Language Models (LLMs), such as ChatGPT and GPT-4, have revolutionized natural language processing research and demonstrated potential in Artificial General Intelligence (AGI). However, the expensive training and deployment of LLMs present challenges to transparent and open academic research. To address these issues, this project open-sources the Chinese LLaMA and Alpaca large models, emphasizing instruction fine-tuning. We expand the original LLaMA's Chinese vocabulary by adding 20K Chinese tokens, increasing encoding efficiency and enhancing basic semantic understanding. By incorporating secondary pre-training using Chinese data and fine-tuning with Chinese instruction data, we substantially improve the models' comprehension and execution of instructions. Our pilot study serves as a foundation for researchers adapting LLaMA and Alpaca models to other languages. Resources are made publicly available through GitHub, fostering open research in the Chinese NLP community and beyond. GitHub repository: this https URL
Yiming Cui, Ziqing Yang, Xin Yao
8882
Python
5/21/2023 Better speech synthesis through scaling
In recent years, the field of image generation has been revolutionized by the application of autoregressive transformers and DDPMs. These approaches model the process of image generation as a step-wise probabilistic processes and leverage large amounts of compute and data to learn the image distribution. This methodology of improving performance need not be confined to images. This paper describes a way to apply advances in the image generative domain to speech synthesis. The result is TorToise -- an expressive, multi-voice text-to-speech system. All model code and trained weights have been open-sourced at this https URL.
James Betker
6751
Python
5/21/2023 A Comparative Study on E-Branchformer vs Conformer in Speech Recognition, Translation, and Understanding Tasks
Conformer, a convolution-augmented Transformer variant, has become the de facto encoder architecture for speech processing due to its superior performance in various tasks, including automatic speech recognition (ASR), speech translation (ST) and spoken language understanding (SLU). Recently, a new encoder called E-Branchformer has outperformed Conformer in the LibriSpeech ASR benchmark, making it promising for more general speech applications. This work compares E-Branchformer and Conformer through extensive experiments using different types of end-to-end sequence-to-sequence models. Results demonstrate that E-Branchformer achieves comparable or better performance than Conformer in almost all evaluation sets across 15 ASR, 2 ST, and 3 SLU benchmarks, while being more stable during training. We will release our training configurations and pre-trained models for reproducibility, which can benefit the speech community.
Yifan Peng, Kwangyoun Kim, Felix Wu, Brian Yan, Siddhant Arora, William Chen, Jiyang Tang, Suwon Shon, Prashant Sridhar, Shinji Watanabe
6562
Python
5/21/2023 A Comparative Study between Full-Parameter and LoRA-based Fine-Tuning on Chinese Instruction Data for Instruction Following Large Language Model
Recently, the instruction-tuning of large language models is a crucial area of research in the field of natural language processing. Due to resource and cost limitations, several researchers have employed parameter-efficient tuning techniques, such as LoRA, for instruction tuning, and have obtained encouraging results In comparison to full-parameter fine-tuning, LoRA-based tuning demonstrates salient benefits in terms of training costs. In this study, we undertook experimental comparisons between full-parameter fine-tuning and LoRA-based tuning methods, utilizing LLaMA as the base model. The experimental results show that the selection of the foundational model, training dataset scale, learnable parameter quantity, and model training cost are all important factors. We hope that the experimental conclusions of this paper can provide inspiration for training large language models, especially in the field of Chinese, and help researchers find a better trade-off strategy between training cost and model performance. To facilitate the reproduction of the paper's results, the dataset, model and code will be released.
Xianghui Sun, Yunjie Ji, Baochang Ma, Xiangang Li
5328
HTML
5/21/2023 Towards Better Instruction Following Language Models for Chinese: Investigating the Impact of Training Data and Evaluation
Recently, significant public efforts have been directed towards developing low-cost models with capabilities akin to ChatGPT, thereby fostering the growth of open-source conversational models. However, there remains a scarcity of comprehensive and in-depth evaluations of these models' performance. In this study, we examine the influence of training data factors, including quantity, quality, and linguistic distribution, on model performance. Our analysis is grounded in several publicly accessible, high-quality instruction datasets, as well as our own Chinese multi-turn conversations. We assess various models using a evaluation set of 1,000 samples, encompassing nine real-world scenarios. Our goal is to supplement manual evaluations with quantitative analyses, offering valuable insights for the continued advancement of open-source chat models. Furthermore, to enhance the performance and training and inference efficiency of models in the Chinese domain, we extend the vocabulary of LLaMA - the model with the closest open-source performance to proprietary language models like GPT-3 - and conduct secondary pre-training on 3.4B Chinese words. We make our model, data, as well as code publicly available.
Yunjie Ji, Yan Gong, Yong Deng, Yiping Peng, Qiang Niu, Baochang Ma, Xiangang Li
5328
HTML
5/21/2023 Shall We Pretrain Autoregressive Language Models with Retrieval? A Comprehensive Study
Large decoder-only language models (LMs) can be largely improved in terms of perplexity by retrieval (e.g., RETRO), but its impact on text generation quality and downstream task accuracy is unclear. Thus, it is still an open question: shall we pretrain large autoregressive LMs with retrieval? To answer it, we perform a comprehensive study on a scalable pre-trained retrieval-augmented LM (i.e., RETRO) compared with standard GPT and retrieval-augmented GPT incorporated at fine-tuning or inference stages. We first provide the recipe to reproduce RETRO up to 9.5B parameters while retrieving a text corpus with 330B tokens. Based on that, we have the following novel findings: i) RETRO outperforms GPT on text generation with much less degeneration (i.e., repetition), moderately higher factual accuracy, and slightly lower toxicity with a nontoxic retrieval database. ii) On the LM Evaluation Harness benchmark, RETRO largely outperforms GPT on knowledge-intensive tasks, but is on par with GPT on other tasks. Furthermore, we introduce a simple variant of the model, RETRO++, which largely improves open-domain QA results of original RETRO (e.g., EM score +8.6 on Natural Question) and significantly outperforms retrieval-augmented GPT across different model sizes. Our findings highlight the promising direction of pretraining autoregressive LMs with retrieval as future foundation models. We release our implementation at: this https URL
Boxin Wang, Wei Ping, Peng Xu, Lawrence McAfee, Zihan Liu, Mohammad Shoeybi, Yi Dong, Oleksii Kuchaiev, Bo Li, Chaowei Xiao, Anima Anandkumar, Bryan Catanzaro
5086
Python
5/21/2023 LLaMA-Adapter V2: Parameter-Efficient Visual Instruction Model
How to efficiently transform large language models (LLMs) into instruction followers is recently a popular research direction, while training LLM for multi-modal reasoning remains less explored. Although the recent LLaMA-Adapter demonstrates the potential to handle visual inputs with LLMs, it still cannot generalize well to open-ended visual instructions and lags behind GPT-4. In this paper, we present LLaMA-Adapter V2, a parameter-efficient visual instruction model. Specifically, we first augment LLaMA-Adapter by unlocking more learnable parameters (e.g., norm, bias and scale), which distribute the instruction-following ability across the entire LLaMA model besides adapters. Secondly, we propose an early fusion strategy to feed visual tokens only into the early LLM layers, contributing to better visual knowledge incorporation. Thirdly, a joint training paradigm of image-text pairs and instruction-following data is introduced by optimizing disjoint groups of learnable parameters. This strategy effectively alleviates the interference between the two tasks of image-text alignment and instruction following and achieves strong multi-modal reasoning with only a small-scale image-text and instruction dataset. During inference, we incorporate additional expert models (e.g. captioning/OCR systems) into LLaMA-Adapter to further enhance its image understanding capability without incurring training costs. Compared to the original LLaMA-Adapter, our LLaMA-Adapter V2 can perform open-ended multi-modal instructions by merely introducing 14M parameters over LLaMA. The newly designed framework also exhibits stronger language-only instruction-following capabilities and even excels in chat interactions. Our code and models are available at this https URL.
Peng Gao, Jiaming Han, Renrui Zhang, Ziyi Lin, Shijie Geng, Aojun Zhou, Wei Zhang, Pan Lu, Conghui He, Xiangyu Yue, Hongsheng Li, Yu Qiao
3529
Python
5/21/2023 Contextual Multilingual Spellchecker for User Queries
Spellchecking is one of the most fundamental and widely used search features. Correcting incorrectly spelled user queries not only enhances the user experience but is expected by the user. However, most widely available spellchecking solutions are either lower accuracy than state-of-the-art solutions or too slow to be used for search use cases where latency is a key requirement. Furthermore, most innovative recent architectures focus on English and are not trained in a multilingual fashion and are trained for spell correction in longer text, which is a different paradigm from spell correction for user queries, where context is sparse (most queries are 1-2 words long). Finally, since most enterprises have unique vocabularies such as product names, off-the-shelf spelling solutions fall short of users' needs. In this work, we build a multilingual spellchecker that is extremely fast and scalable and that adapts its vocabulary and hence speller output based on a specific product's needs. Furthermore, our speller out-performs general purpose spellers by a wide margin on in-domain datasets. Our multilingual speller is used in search in Adobe products, powering autocomplete in various applications.
Sanat Sharma, Josep Valls-Vargas, Tracy Holloway King, Francois Guerin, Chirag Arora
2822
C#
5/21/2023 HuaTuo: Tuning LLaMA Model with Chinese Medical Knowledge
Large Language Models (LLMs), such as the LLaMA model, have demonstrated their effectiveness in various general-domain natural language processing (NLP) tasks. Nevertheless, LLMs have not yet performed optimally in biomedical domain tasks due to the need for medical expertise in the responses. In response to this challenge, we propose HuaTuo, a LLaMA-based model that has been supervised-fine-tuned with generated QA (Question-Answer) instances. The experimental results demonstrate that HuaTuo generates responses that possess more reliable medical knowledge. Our proposed HuaTuo model is accessible at this https URL.
Haochun Wang, Chi Liu, Nuwa Xi, Zewen Qiang, Sendong Zhao, Bing Qin, Ting Liu
2540
Python
5/21/2023 Tool Learning with Foundation Models
Humans possess an extraordinary ability to create and utilize tools, allowing them to overcome physical limitations and explore new frontiers. With the advent of foundation models, AI systems have the potential to be equally adept in tool use as humans. This paradigm, i.e., tool learning with foundation models, combines the strengths of specialized tools and foundation models to achieve enhanced accuracy, efficiency, and automation in problem-solving. Despite its immense potential, there is still a lack of a comprehensive understanding of key challenges, opportunities, and future endeavors in this field. To this end, we present a systematic investigation of tool learning in this paper. We first introduce the background of tool learning, including its cognitive origins, the paradigm shift of foundation models, and the complementary roles of tools and models. Then we recapitulate existing tool learning research into tool-augmented and tool-oriented learning. We formulate a general tool learning framework: starting from understanding the user instruction, models should learn to decompose a complex task into several subtasks, dynamically adjust their plan through reasoning, and effectively conquer each sub-task by selecting appropriate tools. We also discuss how to train models for improved tool-use capabilities and facilitate the generalization in tool learning. Considering the lack of a systematic tool learning evaluation in prior works, we experiment with 17 representative tools and show the potential of current foundation models in skillfully utilizing tools. Finally, we discuss several open problems that require further investigation for tool learning. Overall, we hope this paper could inspire future research in integrating tools with foundation models.
Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen, Ning Ding, Ganqu Cui, Zheni Zeng, Yufei Huang, Chaojun Xiao, Chi Han, Yi Ren Fung, Yusheng Su, Huadong Wang, Cheng Qian, Runchu Tian, Kunlun Zhu, Shihao Liang, Xingyu Shen, Bokai Xu, Zhen Zhang, Yining Ye, Bowen Li, Ziwei Tang, Jing Yi, Yuzhang Zhu, Zhenning Dai, Lan Yan, Xin Cong, Yaxi Lu, Weilin Zhao, Yuxiang Huang, Junxi Yan, Xu Han, Xian Sun, Dahai Li, Jason Phang, Cheng Yang, Tongshuang Wu, Heng Ji, Zhiyuan Liu, Maosong Sun
1966
Python
5/21/2023 How to Unleash the Power of Large Language Models for Few-shot Relation Extraction?
Scaling language models have revolutionized widespread NLP tasks, yet little comprehensively explored few-shot relation extraction with large language models. In this paper, we investigate principal methodologies, in-context learning and data generation, for few-shot relation extraction via GPT-3.5 through exhaustive experiments. To enhance few-shot performance, we further propose task-related instructions and schema-constrained data generation. We observe that in-context learning can achieve performance on par with previous prompt learning approaches, and data generation with the large language model can boost previous solutions to obtain new state-of-the-art few-shot results on four widely-studied relation extraction datasets. We hope our work can inspire future research for the capabilities of large language models in few-shot relation extraction. Code is available in this https URL.
Xin Xu, Yuqi Zhu, Xiaohan Wang, Ningyu Zhang
1866
Python
5/21/2023 CodeKGC: Code Language Model for Generative Knowledge Graph Construction
Current generative knowledge graph construction approaches usually fail to capture structural knowledge by simply flattening natural language into serialized texts or a specification language. However, large generative language model trained on structured data such as code has demonstrated impressive capability in understanding natural language for structural prediction and reasoning tasks. Intuitively, we address the task of generative knowledge graph construction with code language model: given a code-format natural language input, the target is to generate triples which can be represented as code completion tasks. Specifically, we develop schema-aware prompts that effectively utilize the semantic structure within the knowledge graph. As code inherently possesses structure, such as class and function definitions, it serves as a useful model for prior semantic structural knowledge. Furthermore, we employ a rationale-enhanced generation method to boost the performance. Rationales provide intermediate steps, thereby improving knowledge extraction abilities. Experimental results indicate that the proposed approach can obtain better performance on benchmark datasets compared with baselines. Code and datasets are available in this https URL.
Zhen Bi, Jing Chen, Yinuo Jiang, Feiyu Xiong, Wei Guo, Huajun Chen, Ningyu Zhang
1866
Python
5/21/2023 VideoChat: Chat-Centric Video Understanding
In this study, we initiate an exploration into video understanding by introducing VideoChat, an end-to-end chat-centric video understanding system. It integrates video foundation models and large language models via a learnable neural interface, excelling in spatiotemporal reasoning, event localization, and causal relationship inference. To instructively tune this system, we propose a video-centric instruction dataset, composed of thousands of videos matched with detailed descriptions and conversations. This dataset emphasizes spatiotemporal reasoning and causal relationships, providing a valuable asset for training chat-centric video understanding systems. Preliminary qualitative experiments reveal our system's potential across a broad spectrum of video applications and set the standard for future research. Access our code and data at this https URL
KunChang Li, Yinan He, Yi Wang, Yizhuo Li, Wenhai Wang, Ping Luo, Yali Wang, Limin Wang, Yu Qiao
1623
Python
5/21/2023 CodeT5+: Open Code Large Language Models for Code Understanding and Generation
Large language models (LLMs) pretrained on vast source code have achieved prominent progress in code intelligence. However, existing code LLMs have two main limitations in terms of architecture and pretraining tasks. First, they often adopt a specific architecture (encoder-only or decoder-only) or rely on a unified encoder-decoder network for different downstream tasks. The former paradigm is limited by inflexibility in applications while in the latter, the model is treated as a single system for all tasks, leading to suboptimal performance on a subset of tasks. Secondly, they often employ a limited set of pretraining objectives which might not be relevant to some downstream tasks and hence result in substantial performance degrade. To address these limitations, we propose ``CodeT5+'', a family of encoder-decoder LLMs for code in which component modules can be flexibly combined to suit a wide range of downstream code tasks. Such flexibility is enabled by our proposed mixture of pretraining objectives to mitigate the pretrain-finetune discrepancy. These objectives cover span denoising, contrastive learning, text-code matching, and causal LM pretraining tasks, on both unimodal and bimodal multilingual code corpora. Furthermore, we propose to initialize CodeT5+ with frozen off-the-shelf LLMs without training from scratch to efficiently scale up our models, and explore instruction-tuning to align with natural language instructions. We extensively evaluate CodeT5+ on over 20 code-related benchmarks in different settings, including zero-shot, finetuning, and instruction-tuning. We observe state-of-the-art (SoTA) model performance on various code-related tasks, such as code generation and completion, math programming, and text-to-code retrieval tasks. Particularly, our instruction-tuned CodeT5+ 16B achieves new SoTA results on HumanEval code generation task against other open code LLMs.
Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi D.Q. Bui, Junnan Li, Steven C.H. Hoi
1522
Python
5/21/2023 MultiModal-GPT: A Vision and Language Model for Dialogue with Humans
We present a vision and language model named MultiModal-GPT to conduct multi-round dialogue with humans. MultiModal-GPT can follow various instructions from humans, such as generating a detailed caption, counting the number of interested objects, and answering general questions from users. MultiModal-GPT is parameter-efficiently fine-tuned from OpenFlamingo, with Low-rank Adapter (LoRA) added both in the cross-attention part and the self-attention part of the language model. We first construct instruction templates with vision and language data for multi-modality instruction tuning to make the model understand and follow human instructions. We find the quality of training data is vital for the dialogue performance, where few data containing short answers can lead the model to respond shortly to any instructions. To further enhance the ability to chat with humans of the MultiModal-GPT, we utilize language-only instruction-following data to train the MultiModal-GPT jointly. The joint training of language-only and visual-language instructions with the \emph{same} instruction template effectively improves dialogue performance. Various demos show the ability of continuous dialogue of MultiModal-GPT with humans. Code, dataset, and demo are at this https URL
Tao Gong, Chengqi Lyu, Shilong Zhang, Yudong Wang, Miao Zheng, Qian Zhao, Kuikun Liu, Wenwei Zhang, Ping Luo, Kai Chen
897
Python
5/21/2023 WikiWeb2M: A Page-Level Multimodal Wikipedia Dataset
Webpages have been a rich resource for language and vision-language tasks. Yet only pieces of webpages are kept: image-caption pairs, long text articles, or raw HTML, never all in one place. Webpage tasks have resultingly received little attention and structured image-text data underused. To study multimodal webpage understanding, we introduce the Wikipedia Webpage 2M (WikiWeb2M) suite; the first to retain the full set of images, text, and structure data available in a page. WikiWeb2M can be used for tasks like page description generation, section summarization, and contextual image captioning.
Andrea Burns, Krishna Srinivasan, Joshua Ainslie, Geoff Brown, Bryan A. Plummer, Kate Saenko, Jianmo Ni, Mandy Guo
818
5/21/2023 Personalize Segment Anything Model with One Shot
Driven by large-data pre-training, Segment Anything Model (SAM) has been demonstrated as a powerful and promptable framework, revolutionizing the segmentation models. Despite the generality, customizing SAM for specific visual concepts without man-powered prompting is under explored, e.g., automatically segmenting your pet dog in different images. In this paper, we propose a training-free Personalization approach for SAM, termed as PerSAM. Given only a single image with a reference mask, PerSAM first localizes the target concept by a location prior, and segments it within other images or videos via three techniques: target-guided attention, target-semantic prompting, and cascaded post-refinement. In this way, we effectively adapt SAM for private use without any training. To further alleviate the mask ambiguity, we present an efficient one-shot fine-tuning variant, PerSAM-F. Freezing the entire SAM, we introduce two learnable weights for multi-scale masks, only training 2 parameters within 10 seconds for improved performance. To demonstrate our efficacy, we construct a new segmentation dataset, PerSeg, for personalized evaluation, and test our methods on video object segmentation with competitive performance. Besides, our approach can also enhance DreamBooth to personalize Stable Diffusion for text-to-image generation, which discards the background disturbance for better target appearance learning. Code is released at this https URL
Renrui Zhang, Zhengkai Jiang, Ziyu Guo, Shilin Yan, Junting Pan, Hao Dong, Peng Gao, Hongsheng Li
794
Python
5/21/2023 Otter: A Multi-Modal Model with In-Context Instruction Tuning
Large language models (LLMs) have demonstrated significant universal capabilities as few/zero-shot learners in various tasks due to their pre-training on vast amounts of text data, as exemplified by GPT-3, which boosted to InstrctGPT and ChatGPT, effectively following natural language instructions to accomplish real-world tasks. In this paper, we propose to introduce instruction tuning into multi-modal models, motivated by the Flamingo model's upstream interleaved format pretraining dataset. We adopt a similar approach to construct our MultI-Modal In-Context Instruction Tuning (MIMIC-IT) dataset. We then introduce Otter, a multi-modal model based on OpenFlamingo (open-sourced version of DeepMind's Flamingo), trained on MIMIC-IT and showcasing improved instruction-following ability and in-context learning. We also optimize OpenFlamingo's implementation for researchers, democratizing the required training resources from 1$\times$ A100 GPU to 4$\times$ RTX-3090 GPUs, and integrate both OpenFlamingo and Otter into Huggingface Transformers for more researchers to incorporate the models into their customized training and inference pipelines.
Bo Li, Yuanhan Zhang, Liangyu Chen, Jinghao Wang, Jingkang Yang, Ziwei Liu
782
Python
5/21/2023 Chameleon: Plug-and-Play Compositional Reasoning with Large Language Models
Large language models (LLMs) have achieved remarkable progress in various natural language processing tasks with emergent abilities. However, they face inherent limitations, such as an inability to access up-to-date information, utilize external tools, or perform precise mathematical reasoning. In this paper, we introduce Chameleon, a plug-and-play compositional reasoning framework that augments LLMs to help address these challenges. Chameleon synthesizes programs to compose various tools, including LLM models, off-the-shelf vision models, web search engines, Python functions, and rule-based modules tailored to user interests. Built on top of an LLM as a natural language planner, Chameleon infers the appropriate sequence of tools to compose and execute in order to generate a final response. We showcase the adaptability and effectiveness of Chameleon on two tasks: ScienceQA and TabMWP. Notably, Chameleon with GPT-4 achieves an 86.54% accuracy on ScienceQA, significantly improving upon the best published few-shot model by 11.37%; using GPT-4 as the underlying LLM, Chameleon achieves a 17.8% increase over the state-of-the-art model, leading to a 98.78% overall accuracy on TabMWP. Further studies suggest that using GPT-4 as a planner exhibits more consistent and rational tool selection and is able to infer potential constraints given the instructions, compared to other LLMs like ChatGPT.
Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu, Jianfeng Gao
730
Jupyter Notebook
5/21/2023 Unlimiformer: Long-Range Transformers with Unlimited Length Input
Transformer-based models typically have a predefined bound to their input length, because of their need to potentially attend to every token in the input. In this work, we propose Unlimiformer: a general approach that can wrap any existing pretrained encoder-decoder transformer, and offload the attention computation across all layers to a single $k$-nearest-neighbor index; this index can be kept on either the GPU or CPU memory and queried in sub-linear time. This way, we can index extremely long input sequences, while every attention head in every decoder layer retrieves its top-$k$ keys, instead of attending to every key. We demonstrate Unlimiformers's efficacy on several long-document and multi-document summarization benchmarks, showing that it can summarize even 350k token-long inputs from the BookSum dataset, without any input truncation at test time. Unlimiformer improves pretrained models such as BART and Longformer by extending them to unlimited inputs without additional learned weights and without modifying their code. We make our code and models publicly available at this https URL .
Amanda Bertsch, Uri Alon, Graham Neubig, Matthew R. Gormley
710
Python
5/21/2023 Multimodal C4: An Open, Billion-scale Corpus of Images Interleaved With Text
In-context vision and language models like Flamingo support arbitrarily interleaved sequences of images and text as input. This format not only enables few-shot learning via interleaving independent supervised (image, text) examples, but also, more complex prompts involving interaction between images, e.g., "What do image A and image B have in common?" To support this interface, pretraining occurs over web corpora that similarly contain interleaved images+text. To date, however, large-scale data of this form have not been publicly available. We release Multimodal C4 (mmc4), an augmentation of the popular text-only c4 corpus with images interleaved. We use a linear assignment algorithm to place images into longer bodies of text using CLIP features, a process that we show outperforms alternatives. mmc4 spans everyday topics like cooking, travel, technology, etc. A manual inspection of a random sample of documents shows that a vast majority (90%) of images are topically relevant, and that linear assignment frequently selects individual sentences specifically well-aligned with each image (78%). After filtering NSFW images, ads, etc., the corpus contains 103M documents containing 585M images interleaved with 43B English tokens.
Wanrong Zhu, Jack Hessel, Anas Awadalla, Samir Yitzhak Gadre, Jesse Dodge, Alex Fang, Youngjae Yu, Ludwig Schmidt, William Yang Wang, Yejin Choi
686
Python
5/21/2023 Panda LLM: Training Data and Evaluation for Open-Sourced Chinese Instruction-Following Large Language Models
This project focuses on enhancing open-source large language models through instruction-tuning and providing comprehensive evaluations of their performance. We explore how various training data factors, such as quantity, quality, and linguistic distribution, influence the performance of instruction-tuned models trained on publicly accessible high-quality instruction datasets for both English and Chinese languages. Our goal is to supplement evaluation with quantitative analyses, providing valuable insights for the continued advancement of open-source chat models. Our model, data, and code are publicly available for others to use and build upon.
Fangkai Jiao, Bosheng Ding, Tianze Luo, Zhanfeng Mo
642
Python
5/21/2023 FunASR: A Fundamental End-to-End Speech Recognition Toolkit
This paper introduces FunASR, an open-source speech recognition toolkit designed to bridge the gap between academic research and industrial applications. FunASR offers models trained on large-scale industrial corpora and the ability to deploy them in applications. The toolkit's flagship model, Paraformer, is a non-autoregressive end-to-end speech recognition model that has been trained on a manually annotated Mandarin speech recognition dataset that contains 60,000 hours of speech. To improve the performance of Paraformer, we have added timestamp prediction and hotword customization capabilities to the standard Paraformer backbone. In addition, to facilitate model deployment, we have open-sourced a voice activity detection model based on the Feedforward Sequential Memory Network (FSMN-VAD) and a text post-processing punctuation model based on the controllable time-delay Transformer (CT-Transformer), both of which were trained on industrial corpora. These functional modules provide a solid foundation for building high-precision long audio speech recognition services. Compared to other models trained on open datasets, Paraformer demonstrates superior performance.
Zhifu Gao, Zerui Li, Jiaming Wang, Haoneng Luo, Xian Shi, Mengzhe Chen, Yabin Li, Lingyun Zuo, Zhihao Du, Zhangyu Xiao, Shiliang Zhang
444
Python
5/21/2023 AR-Diffusion: Auto-Regressive Diffusion Model for Text Generation
Diffusion models have gained significant attention in the realm of image generation due to their exceptional performance. Their success has been recently expanded to text generation via generating all tokens within a sequence concurrently. However, natural language exhibits a far more pronounced sequential dependency in comparison to images, and the majority of existing language models are trained utilizing a left-to-right auto-regressive approach. To account for the inherent sequential characteristic of natural language, we introduce Auto-Regressive Diffusion (AR-Diffusion). AR-Diffusion ensures that the generation of tokens on the right depends on the generated ones on the left, a mechanism achieved through employing a dynamic number of denoising steps that vary based on token position. This results in tokens on the left undergoing fewer denoising steps than those on the right, thereby enabling them to generate earlier and subsequently influence the generation of tokens on the right. In a series of experiments on various text generation tasks including text summarization, machine translation, and common sense generation, AR-Diffusion clearly demonstrated the superiority over existing diffusion language models and that it can be $100\times\sim600\times$ faster when achieving comparable results. Our code will be publicly released.
Tong Wu, Zhihao Fan, Xiao Liu, Yeyun Gong, Yelong Shen, Jian Jiao, Hai-Tao Zheng, Juntao Li, Zhongyu Wei, Jian Guo, Nan Duan, Weizhu Chen
434
Python
5/21/2023 WebCPM: Interactive Web Search for Chinese Long-form Question Answering
Long-form question answering (LFQA) aims at answering complex, open-ended questions with detailed, paragraph-length responses. The de facto paradigm of LFQA necessitates two procedures: information retrieval, which searches for relevant supporting facts, and information synthesis, which integrates these facts into a coherent answer. In this paper, we introduce WebCPM, the first Chinese LFQA dataset. One unique feature of WebCPM is that its information retrieval is based on interactive web search, which engages with a search engine in real time. Following WebGPT, we develop a web search interface. We recruit annotators to search for relevant information using our interface and then answer questions. Meanwhile, the web search behaviors of our annotators would be recorded. In total, we collect 5,500 high-quality question-answer pairs, together with 14,315 supporting facts and 121,330 web search actions. We fine-tune pre-trained language models to imitate human behaviors for web search and to generate answers based on the collected facts. Our LFQA pipeline, built on these fine-tuned models, generates answers that are no worse than human-written ones in 32.5% and 47.5% of the cases on our dataset and DuReader, respectively.
Yujia Qin, Zihan Cai, Dian Jin, Lan Yan, Shihao Liang, Kunlun Zhu, Yankai Lin, Xu Han, Ning Ding, Huadong Wang, Ruobing Xie, Fanchao Qi, Zhiyuan Liu, Maosong Sun, Jie Zhou
406
HTML
5/21/2023 Language Models Enable Simple Systems for Generating Structured Views of Heterogeneous Data Lakes
A long standing goal of the data management community is to develop general, automated systems that ingest semi-structured documents and output queryable tables without human effort or domain specific customization. Given the sheer variety of potential documents, state-of-the art systems make simplifying assumptions and use domain specific training. In this work, we ask whether we can maintain generality by using large language models (LLMs). LLMs, which are pretrained on broad data, can perform diverse downstream tasks simply conditioned on natural language task descriptions. We propose and evaluate EVAPORATE, a simple, prototype system powered by LLMs. We identify two fundamentally different strategies for implementing this system: prompt the LLM to directly extract values from documents or prompt the LLM to synthesize code that performs the extraction. Our evaluations show a cost-quality tradeoff between these two approaches. Code synthesis is cheap, but far less accurate than directly processing each document with the LLM. To improve quality while maintaining low cost, we propose an extended code synthesis implementation, EVAPORATE-CODE+, which achieves better quality than direct extraction. Our key insight is to generate many candidate functions and ensemble their extractions using weak supervision. EVAPORATE-CODE+ not only outperforms the state-of-the art systems, but does so using a sublinear pass over the documents with the LLM. This equates to a 110x reduction in the number of tokens the LLM needs to process, averaged across 16 real-world evaluation settings of 10k documents each.
Simran Arora, Brandon Yang, Sabri Eyuboglu, Avanika Narayan, Andrew Hojel, Immanuel Trummer, Christopher Re
366
Python
5/21/2023 Long-Tailed Question Answering in an Open World
Real-world data often have an open long-tailed distribution, and building a unified QA model supporting various tasks is vital for practical QA applications. However, it is non-trivial to extend previous QA approaches since they either require access to seen tasks of adequate samples or do not explicitly model samples from unseen tasks. In this paper, we define Open Long-Tailed QA (OLTQA) as learning from long-tailed distributed data and optimizing performance over seen and unseen QA tasks. We propose an OLTQA model that encourages knowledge sharing between head, tail and unseen tasks, and explicitly mines knowledge from a large pre-trained language model (LM). Specifically, we organize our model through a pool of fine-grained components and dynamically combine these components for an input to facilitate knowledge sharing. A retrieve-then-rerank frame is further introduced to select in-context examples, which guild the LM to generate text that express knowledge for QA tasks. Moreover, a two-stage training approach is introduced to pre-train the framework by knowledge distillation (KD) from the LM and then jointly train the frame and a QA model through an adaptive mutual KD method. On a large-scale OLTQA dataset we curate from 43 existing QA datasets, our model consistently outperforms the state-of-the-art. We release the code and data at \url{this https URL}.
Yi Dai, Hao Lang, Yinhe Zheng, Fei Huang, Yongbin Li
364
Python
5/21/2023 Domain Incremental Lifelong Learning in an Open World
Lifelong learning (LL) is an important ability for NLP models to learn new tasks continuously. Architecture-based approaches are reported to be effective implementations for LL models. However, it is non-trivial to extend previous approaches to domain incremental LL scenarios since they either require access to task identities in the testing phase or cannot handle samples from unseen tasks. In this paper, we propose \textbf{Diana}: a \underline{d}ynam\underline{i}c \underline{a}rchitecture-based lifelo\underline{n}g le\underline{a}rning model that tries to learn a sequence of tasks with a prompt-enhanced language model. Four types of hierarchically organized prompts are used in Diana to capture knowledge from different granularities. Specifically, we dedicate task-level prompts to capture task-specific knowledge to retain high LL performances and maintain instance-level prompts to learn knowledge shared across input samples to improve the model's generalization performance. Moreover, we dedicate separate prompts to explicitly model unseen tasks and introduce a set of prompt key vectors to facilitate knowledge sharing between tasks. Extensive experiments demonstrate that Diana outperforms state-of-the-art LL models, especially in handling unseen tasks. We release the code and data at \url{this https URL}.
Yi Dai, Hao Lang, Yinhe Zheng, Bowen Yu, Fei Huang, Yongbin Li
364
Python
5/21/2023 Unsupervised Dialogue Topic Segmentation with Topic-aware Utterance Representation
Dialogue Topic Segmentation (DTS) plays an essential role in a variety of dialogue modeling tasks. Previous DTS methods either focus on semantic similarity or dialogue coherence to assess topic similarity for unsupervised dialogue segmentation. However, the topic similarity cannot be fully identified via semantic similarity or dialogue coherence. In addition, the unlabeled dialogue data, which contains useful clues of utterance relationships, remains underexploited. In this paper, we propose a novel unsupervised DTS framework, which learns topic-aware utterance representations from unlabeled dialogue data through neighboring utterance matching and pseudo-segmentation. Extensive experiments on two benchmark datasets (i.e., DialSeg711 and Doc2Dial) demonstrate that our method significantly outperforms the strong baseline methods. For reproducibility, we provide our code and data at:this https URL.
Haoyu Gao, Rui Wang, Ting-En Lin, Yuchuan Wu, Min Yang, Fei Huang, Yongbin Li
364
Python
5/21/2023 TidyBot: Personalized Robot Assistance with Large Language Models
For a robot to personalize physical assistance effectively, it must learn user preferences that can be generally reapplied to future scenarios. In this work, we investigate personalization of household cleanup with robots that can tidy up rooms by picking up objects and putting them away. A key challenge is determining the proper place to put each object, as people's preferences can vary greatly depending on personal taste or cultural background. For instance, one person may prefer storing shirts in the drawer, while another may prefer them on the shelf. We aim to build systems that can learn such preferences from just a handful of examples via prior interactions with a particular person. We show that robots can combine language-based planning and perception with the few-shot summarization capabilities of large language models (LLMs) to infer generalized user preferences that are broadly applicable to future interactions. This approach enables fast adaptation and achieves 91.2% accuracy on unseen objects in our benchmark dataset. We also demonstrate our approach on a real-world mobile manipulator called TidyBot, which successfully puts away 85.0% of objects in real-world test scenarios.
Jimmy Wu, Rika Antonova, Adam Kan, Marion Lepert, Andy Zeng, Shuran Song, Jeannette Bohg, Szymon Rusinkiewicz, Thomas Funkhouser
217
Python
5/21/2023 PMC-LLaMA: Further Finetuning LLaMA on Medical Papers
Large Language Models (LLMs) have showcased remarkable capabilities in natural language understanding in various domains. These models can usually behave well on daily dialog, or question answering scenarios, however, in areas that value precision, for example, in medical applications, they often exhibit unsatisfactory performance due to a lack of domain-specific knowledge. In this report, we introduce PMC-LLaMA, an open-source language model that is acquired by fine-tuning an open-source language model on a total of 4.8 million biomedical academic papers for further injecting medical knowledge, enhancing its capability in medical domain. Our preliminary evaluations are conducted on three biomedical QA datasets, including PubMedQA, MedMCQA, and USMLE, showing that the our model after finetuning, i.e., PMC-LLaMA, demonstrates better understanding of biomedical domain-specific concepts, thus achieving high performance on QA benchmarks. The model and codes, along with an online demo, are publicly available.
Chaoyi Wu, Xiaoman Zhang, Ya Zhang, Yanfeng Wang, Weidi Xie
189
Python
5/21/2023 DAMO-NLP at SemEval-2023 Task 2: A Unified Retrieval-augmented System for Multilingual Named Entity Recognition
The MultiCoNER \RNum{2} shared task aims to tackle multilingual named entity recognition (NER) in fine-grained and noisy scenarios, and it inherits the semantic ambiguity and low-context setting of the MultiCoNER \RNum{1} task. To cope with these problems, the previous top systems in the MultiCoNER \RNum{1} either incorporate the knowledge bases or gazetteers. However, they still suffer from insufficient knowledge, limited context length, single retrieval strategy. In this paper, our team \textbf{DAMO-NLP} proposes a unified retrieval-augmented system (U-RaNER) for fine-grained multilingual NER. We perform error analysis on the previous top systems and reveal that their performance bottleneck lies in insufficient knowledge. Also, we discover that the limited context length causes the retrieval knowledge to be invisible to the model. To enhance the retrieval context, we incorporate the entity-centric Wikidata knowledge base, while utilizing the infusion approach to broaden the contextual scope of the model. Also, we explore various search strategies and refine the quality of retrieval knowledge. Our system\footnote{We will release the dataset, code, and scripts of our system at {\small \url{this https URL}}.} wins 9 out of 13 tracks in the MultiCoNER \RNum{2} shared task. Additionally, we compared our system with ChatGPT, one of the large language models which have unlocked strong capabilities on many tasks. The results show that there is still much room for improvement for ChatGPT on the extraction task.
Zeqi Tan, Shen Huang, Zixia Jia, Jiong Cai, Yinghui Li, Weiming Lu, Yueting Zhuang, Kewei Tu, Pengjun Xie, Fei Huang, Yong Jiang
179
Python
5/21/2023 Is Your Code Generated by ChatGPT Really Correct? Rigorous Evaluation of Large Language Models for Code Generation
Program synthesis has been long studied with recent approaches focused on directly using the power of Large Language Models (LLMs) to generate code according to user intent written in natural language. Code evaluation datasets, containing curated synthesis problems with input/output test-cases, are used to measure the performance of various LLMs on code synthesis. However, test-cases in these datasets can be limited in both quantity and quality for fully assessing the functional correctness of the generated code. Such limitation in the existing benchmarks begs the following question: In the era of LLMs, is the code generated really correct? To answer this, we propose EvalPlus -- a code synthesis benchmarking framework to rigorously evaluate the functional correctness of LLM-synthesized code. In short, EvalPlus takes in the base evaluation dataset and uses an automatic input generation step to produce and diversify large amounts of new test inputs using both LLM-based and mutation-based input generators to further validate the synthesized code. We extend the popular HUMANEVAL benchmark and build HUMANEVAL+ with 81x additionally generated tests. Our extensive evaluation across 14 popular LLMs demonstrates that HUMANEVAL+ is able to catch significant amounts of previously undetected wrong code synthesized by LLMs, reducing the pass@k by 15.1% on average! Moreover, we even found several incorrect ground-truth implementations in HUMANEVAL. Our work not only indicates that prior popular code synthesis evaluation results do not accurately reflect the true performance of LLMs for code synthesis but also opens up a new direction to improve programming benchmarks through automated test input generation.
Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, Lingming Zhang
161
Python
5/21/2023 Transfer Visual Prompt Generator across LLMs
While developing a new vision-language LLM (VL-LLM) by pre-training on tremendous image-text pairs from scratch can be exceedingly resource-consuming, connecting an existing LLM with a comparatively lightweight visual prompt generator (VPG) becomes a feasible paradigm. However, further tuning the VPG part of the VL-LLM still suffers from indispensable computational costs, i.e., requiring thousands of GPU hours and millions of training data. One alternative solution is to transfer an existing VPG from any existing VL-LLMs for the target VL-LLM. In this work, we for the first time investigate the VPG transferability across LLMs, and explore a solution to reduce the cost of VPG transfer. We first study the VPG transfer across different LLM sizes (e.g., small-to-large), and across different LLM types, through which we diagnose the key factors to maximize the transfer efficiency. Based on our observation, we design a two-stage transfer framework named VPGTrans, which is simple yet highly effective. Through extensive experiments, we demonstrate that VPGTrans helps significantly speed up the transfer learning process without compromising performance. Remarkably, it helps achieve the VPG transfer from BLIP-2 OPT$_\text{2.7B}$ to BLIP-2 OPT$_\text{6.7B}$ with over 10 times speed-up and 10.7% training data compared with connecting a VPG to OPT$_\text{6.7B}$ from scratch. Further, a series of intriguing findings and potential rationales behind them are provided and discussed. Finally, we showcase the practical value of our VPGTrans approach, by customizing two novel VL-LLMs, including VL-LLaMA and VL-Vicuna, with recently released LLaMA and Vicuna LLMs.
Ao Zhang, Hao Fei, Yuan Yao, Wei Ji, Li Li, Zhiyuan Liu, Tat-Seng Chua
154
Python
5/21/2023 SpeechGPT: Empowering Large Language Models with Intrinsic Cross-Modal Conversational Abilities
Multi-modal large language models are regarded as a crucial step towards Artificial General Intelligence (AGI) and have garnered significant interest with the emergence of ChatGPT. However, current speech-language models typically adopt the cascade paradigm, preventing inter-modal knowledge transfer. In this paper, we propose SpeechGPT, a large language model with intrinsic cross-modal conversational abilities, capable of perceiving and generating multi-model content. With discrete speech representations, we first construct SpeechInstruct, a large-scale cross-modal speech instruction dataset. Additionally, we employ a three-stage training strategy that includes modality-adaptation pre-training, cross-modal instruction fine-tuning, and chain-of-modality instruction fine-tuning. The experimental results demonstrate that SpeechGPT has an impressive capacity to follow multi-modal human instructions and highlight the potential of handling multiple modalities with one model. Demos are shown in this https URL.
Dong Zhang, Shimin Li, Xin Zhang, Jun Zhan, Pengyu Wang, Yaqian Zhou, Xipeng Qiu
144
5/21/2023 ChatPLUG: Open-Domain Generative Dialogue System with Internet-Augmented Instruction Tuning for Digital Human
In this paper, we present ChatPLUG, a Chinese open-domain dialogue system for digital human applications that instruction finetunes on a wide range of dialogue tasks in a unified internet-augmented format. Different from other open-domain dialogue models that focus on large-scale pre-training and scaling up model size or dialogue corpus, we aim to build a powerful and practical dialogue system for digital human with diverse skills and good multi-task generalization by internet-augmented instruction tuning. To this end, we first conduct large-scale pre-training on both common document corpus and dialogue data with curriculum learning, so as to inject various world knowledge and dialogue abilities into ChatPLUG. Then, we collect a wide range of dialogue tasks spanning diverse features of knowledge, personality, multi-turn memory, and empathy, on which we further instruction tune \modelname via unified natural language instruction templates. External knowledge from an internet search is also used during instruction finetuning for alleviating the problem of knowledge hallucinations. We show that \modelname outperforms state-of-the-art Chinese dialogue systems on both automatic and human evaluation, and demonstrates strong multi-task generalization on a variety of text understanding and generation tasks. In addition, we deploy \modelname to real-world applications such as Smart Speaker and Instant Message applications with fast inference. Our models and code will be made publicly available on ModelScope~\footnote{\small{this https URL}} and Github~\footnote{\small{this https URL}}.
Junfeng Tian, Hehong Chen, Guohai Xu, Ming Yan, Xing Gao, Jianhai Zhang, Chenliang Li, Jiayi Liu, Wenshen Xu, Haiyang Xu, Qi Qian, Wei Wang, Qinghao Ye, Jiejing Zhang, Ji Zhang, Fei Huang, Jingren Zhou
144
Python
5/21/2023 Learning to Compress Prompts with Gist Tokens
Prompting is now the primary way to utilize the multitask capabilities of language models (LMs), but prompts occupy valuable space in the input context window, and re-encoding the same prompt is computationally inefficient. Finetuning and distillation methods allow for specialization of LMs without prompting, but require retraining the model for each task. To avoid this trade-off entirely, we present gisting, which trains an LM to compress prompts into smaller sets of "gist" tokens which can be reused for compute efficiency. Gist models can be easily trained as part of instruction finetuning via a restricted attention mask that encourages prompt compression. On decoder (LLaMA-7B) and encoder-decoder (FLAN-T5-XXL) LMs, gisting enables up to 26x compression of prompts, resulting in up to 40% FLOPs reductions, 4.2% wall time speedups, storage savings, and minimal loss in output quality.
Jesse Mu, Xiang Lisa Li, Noah Goodman
132
Python
5/21/2023 Plan-and-Solve Prompting: Improving Zero-Shot Chain-of-Thought Reasoning by Large Language Models
Large language models (LLMs) have recently been shown to deliver impressive performance in various NLP tasks. To tackle multi-step reasoning tasks, few-shot chain-of-thought (CoT) prompting includes a few manually crafted step-by-step reasoning demonstrations which enable LLMs to explicitly generate reasoning steps and improve their reasoning task accuracy. To eliminate the manual effort, Zero-shot-CoT concatenates the target problem statement with "Let's think step by step" as an input prompt to LLMs. Despite the success of Zero-shot-CoT, it still suffers from three pitfalls: calculation errors, missing-step errors, and semantic misunderstanding errors. To address the missing-step errors, we propose Plan-and-Solve (PS) Prompting. It consists of two components: first, devising a plan to divide the entire task into smaller subtasks, and then carrying out the subtasks according to the plan. To address the calculation errors and improve the quality of generated reasoning steps, we extend PS prompting with more detailed instructions and derive PS+ prompting. We evaluate our proposed prompting strategy on ten datasets across three reasoning problems. The experimental results over GPT-3 show that our proposed zero-shot prompting consistently outperforms Zero-shot-CoT across all datasets by a large margin, is comparable to or exceeds Zero-shot-Program-of-Thought Prompting, and has comparable performance with 8-shot CoT prompting on the math reasoning problem. The code can be found at this https URL.
Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, Ee-Peng Lim
131
Python
5/21/2023 LongForm: Optimizing Instruction Tuning for Long Text Generation with Corpus Extraction
Instruction tuning enables language models to generalize more effectively and better follow user intent. However, obtaining instruction data can be costly and challenging. Prior works employ methods such as expensive human annotation, crowd-sourced datasets with alignment issues, or generating noisy examples via LLMs. We introduce the LongForm dataset, which is created by leveraging English corpus examples with augmented instructions. We select a diverse set of human-written documents from existing corpora such as C4 and Wikipedia and generate instructions for the given documents via LLMs. This approach provides a cheaper and cleaner instruction-tuning dataset and one suitable for long text generation. We finetune T5, OPT, and LLaMA models on our dataset and show that even smaller LongForm models have good generalization capabilities for text generation. Our models outperform 10x larger language models without instruction tuning on various tasks such as story/recipe generation and long-form question answering. Moreover, LongForm models outperform prior instruction-tuned models such as FLAN-T5 and Alpaca by a large margin. Finally, our models can effectively follow and answer multilingual instructions; we demonstrate this for news generation. We publicly release our data and models: this https URL.
Abdullatif Koksal, Timo Schick, Anna Korhonen, Hinrich Schutze
131
5/21/2023 Chinese Open Instruction Generalist: A Preliminary Release
Instruction tuning is widely recognized as a key technique for building generalist language models, which has attracted the attention of researchers and the public with the release of InstructGPT~\citep{ouyang2022training} and ChatGPT\footnote{\url{this https URL}}. Despite impressive progress in English-oriented large-scale language models (LLMs), it is still under-explored whether English-based foundation LLMs can perform similarly on multilingual tasks compared to English tasks with well-designed instruction tuning and how we can construct the corpora needed for the tuning. To remedy this gap, we propose the project as an attempt to create a Chinese instruction dataset by various methods adapted to the intrinsic characteristics of 4 sub-tasks. We collect around 200k Chinese instruction tuning samples, which have been manually checked to guarantee high quality. We also summarize the existing English and Chinese instruction corpora and briefly describe some potential applications of the newly constructed Chinese instruction corpora. The resulting \textbf{C}hinese \textbf{O}pen \textbf{I}nstruction \textbf{G}eneralist (\textbf{COIG}) corpora are available in Huggingface\footnote{\url{this https URL}} and Github\footnote{\url{this https URL}}, and will be continuously updated.
Ge Zhang, Yemin Shi, Ruibo Liu, Ruibin Yuan, Yizhi Li, Siwei Dong, Yu Shu, Zhaoqun Li, Zekun Wang, Chenghua Lin, Wenhao Huang, Jie Fu
128
5/21/2023 Active Retrieval Augmented Generation
Despite the remarkable ability of large language models (LMs) to comprehend and generate language, they have a tendency to hallucinate and create factually inaccurate output. Augmenting LMs by retrieving information from external knowledge resources is one promising solution. Most existing retrieval-augmented LMs employ a retrieve-and-generate setup that only retrieves information once based on the input. This is limiting, however, in more general scenarios involving generation of long texts, where continually gathering information throughout the generation process is essential. There have been some past efforts to retrieve information multiple times while generating outputs, which mostly retrieve documents at fixed intervals using the previous context as queries. In this work, we provide a generalized view of active retrieval augmented generation, methods that actively decide when and what to retrieve across the course of the generation. We propose Forward-Looking Active REtrieval augmented generation (FLARE), a generic retrieval-augmented generation method which iteratively uses a prediction of the upcoming sentence to anticipate future content, which is then utilized as a query to retrieve relevant documents to regenerate the sentence if it contains low-confidence tokens. We test FLARE along with baselines comprehensively over 4 long-form knowledge-intensive generation tasks/datasets. FLARE achieves superior or competitive performance on all tasks, demonstrating the effectiveness of our method. Code and datasets are available at this https URL.
Zhengbao Jiang, Frank F. Xu, Luyu Gao, Zhiqing Sun, Qian Liu, Jane Dwivedi-Yu, Yiming Yang, Jamie Callan, Graham Neubig
126
Python
5/21/2023 InstructUIE: Multi-task Instruction Tuning for Unified Information Extraction
Large language models have unlocked strong multi-task capabilities from reading instructive prompts. However, recent studies have shown that existing large models still have difficulty with information extraction tasks. For example, gpt-3.5-turbo achieved an F1 score of 18.22 on the Ontonotes dataset, which is significantly lower than the state-of-the-art performance. In this paper, we propose InstructUIE, a unified information extraction framework based on instruction tuning, which can uniformly model various information extraction tasks and capture the inter-task dependency. To validate the proposed method, we introduce IE INSTRUCTIONS, a benchmark of 32 diverse information extraction datasets in a unified text-to-text format with expert-written instructions. Experimental results demonstrate that our method achieves comparable performance to Bert in supervised settings and significantly outperforms the state-of-the-art and gpt3.5 in zero-shot settings.
Xiao Wang, Weikang Zhou, Can Zu, Han Xia, Tianze Chen, Yuansen Zhang, Rui Zheng, Junjie Ye, Qi Zhang, Tao Gui, Jihua Kang, Jingsheng Yang, Siyuan Li, Chunsai Du
122
Python
5/21/2023 StructGPT: A General Framework for Large Language Model to Reason over Structured Data
In this paper, we study how to improve the zero-shot reasoning ability of large language models~(LLMs) over structured data in a unified way. Inspired by the study on tool augmentation for LLMs, we develop an \emph{Iterative Reading-then-Reasoning~(IRR)} approach for solving question answering tasks based on structured data, called \textbf{StructGPT}. In our approach, we construct the specialized function to collect relevant evidence from structured data (\ie \emph{reading}), and let LLMs concentrate the reasoning task based on the collected information (\ie \emph{reasoning}). Specially, we propose an \emph{invoking-linearization-generation} procedure to support LLMs in reasoning on the structured data with the help of the external interfaces. By iterating this procedures with provided interfaces, our approach can gradually approach the target answer to a given query. Extensive experiments conducted on three types of structured data demonstrate the effectiveness of our approach, which can significantly boost the performance of ChatGPT and achieve comparable performance against the full-data supervised-tuning baselines. Our codes and data are publicly available at~\url{this https URL}.
Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye, Wayne Xin Zhao, Ji-Rong Wen
117
Python
5/21/2023 Progressive-Hint Prompting Improves Reasoning in Large Language Models
The performance of Large Language Models (LLMs) in reasoning tasks depends heavily on prompt design, with Chain-of-Thought (CoT) and self-consistency being critical methods that enhance this ability. However, these methods do not fully exploit the answers generated by the LLM to guide subsequent responses. This paper proposes a new prompting method, named Progressive-Hint Prompting (PHP), that enables automatic multiple interactions between users and LLMs by using previously generated answers as hints to progressively guide toward the correct answers. PHP is orthogonal to CoT and self-consistency, making it easy to combine with state-of-the-art techniques to further improve performance. We conducted an extensive and comprehensive evaluation to demonstrate the effectiveness of the proposed method. Our experimental results on six benchmarks show that combining CoT and self-consistency with PHP significantly improves accuracy while remaining highly efficient. For instance, with text-davinci-003, we observed a 4.2% improvement on GSM8K with greedy decoding compared to Complex CoT, and a 46.17% reduction in sample paths with self-consistency. With GPT-4 and PHP, we achieve state-of-the-art performances on SVAMP (91.9%), GSM8K (95.5%) and AQuA (79.9%).
Chuanyang Zheng, Zhengying Liu, Enze Xie, Zhenguo Li, Yu Li
107
Python
5/21/2023 C-Eval: A Multi-Level Multi-Discipline Chinese Evaluation Suite for Foundation Models
New NLP benchmarks are urgently needed to align with the rapid development of large language models (LLMs). We present C-Eval, the first comprehensive Chinese evaluation suite designed to assess advanced knowledge and reasoning abilities of foundation models in a Chinese context. C-Eval comprises multiple-choice questions across four difficulty levels: middle school, high school, college, and professional. The questions span 52 diverse disciplines, ranging from humanities to science and engineering. C-Eval is accompanied by C-Eval Hard, a subset of very challenging subjects in C-Eval that requires advanced reasoning abilities to solve. We conduct a comprehensive evaluation of the most advanced LLMs on C-Eval, including both English- and Chinese-oriented models. Results indicate that only GPT-4 could achieve an average accuracy of over 60%, suggesting that there is still significant room for improvement for current LLMs. We anticipate C-Eval will help analyze important strengths and shortcomings of foundation models, and foster their development and growth for Chinese users.
Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei Zhang, Jinghan Zhang, Tangjun Su, Junteng Liu, Chuancheng Lv, Yikai Zhang, Jiayi Lei, Yao Fu, Maosong Sun, Junxian He
102
Python
5/21/2023 ONE-PEACE: Exploring One General Representation Model Toward Unlimited Modalities
In this work, we explore a scalable way for building a general representation model toward unlimited modalities. We release ONE-PEACE, a highly extensible model with 4B parameters that can seamlessly align and integrate representations across vision, audio, and language modalities. The architecture of ONE-PEACE comprises modality adapters, shared self-attention layers, and modality FFNs. This design allows for the easy extension of new modalities by adding adapters and FFNs, while also enabling multi-modal fusion through self-attention layers. To pretrain ONE-PEACE, we develop two modality-agnostic pretraining tasks, cross-modal aligning contrast and intra-modal denoising contrast, which align the semantic space of different modalities and capture fine-grained details within modalities concurrently. With the scaling-friendly architecture and pretraining tasks, ONE-PEACE has the potential to expand to unlimited modalities. Without using any vision or language pretrained model for initialization, ONE-PEACE achieves leading results on a wide range of uni-modal and multi-modal tasks, including image classification (ImageNet), semantic segmentation (ADE20K), audio-text retrieval (AudioCaps, Clotho), audio classification (ESC-50, FSD50K, VGGSound), audio question answering (AVQA), image-text retrieval (MSCOCO, Flickr30K), and visual grounding (RefCOCO/+/g). Code is available at this https URL.
Peng Wang, Shijie Wang, Junyang Lin, Shuai Bai, Xiaohuan Zhou, Jingren Zhou, Xinggang Wang, Chang Zhou
95
Python
5/21/2023 Towards Building the Federated GPT: Federated Instruction Tuning
While ``instruction-tuned" generative large language models (LLMs) have demonstrated an impressive ability to generalize to new tasks, the training phases heavily rely on large amounts of diverse and high-quality instruction data (such as ChatGPT and GPT-4). Unfortunately, acquiring high-quality data, especially when it comes to human-written data, can pose significant challenges both in terms of cost and accessibility. Moreover, concerns related to privacy can further limit access to such data, making the process of obtaining it a complex and nuanced undertaking. Consequently, this hinders the generality of the tuned models and may restrict their effectiveness in certain contexts. To tackle this issue, our study introduces a new approach called Federated Instruction Tuning (FedIT), which leverages federated learning (FL) as the learning framework for the instruction tuning of LLMs. This marks the first exploration of FL-based instruction tuning for LLMs. This is especially important since text data is predominantly generated by end users. Therefore, it is imperative to design and adapt FL approaches to effectively leverage these users' diverse instructions stored on local devices, while preserving privacy and ensuring data security. In the current paper, by conducting widely used GPT-4 auto-evaluation, we demonstrate that by exploiting the heterogeneous and diverse sets of instructions on the client's end with the proposed framework FedIT, we improved the performance of LLMs compared to centralized training with only limited local instructions. Further, in this paper, we developed a Github repository named Shepherd. This repository offers a foundational framework for exploring federated fine-tuning of LLMs using heterogeneous instructions across diverse categories.
Jianyi Zhang, Saeed Vahidian, Martin Kuo, Chunyuan Li, Ruiyi Zhang, Guoyin Wang, Yiran Chen
88
Python
5/21/2023 RetroMAE-2: Duplex Masked Auto-Encoder For Pre-Training Retrieval-Oriented Language Models
To better support information retrieval tasks such as web search and open-domain question answering, growing effort is made to develop retrieval-oriented language models, e.g., RetroMAE and many others. Most of the existing works focus on improving the semantic representation capability for the contextualized embedding of the [CLS] token. However, recent study shows that the ordinary tokens besides [CLS] may provide extra information, which help to produce a better representation effect. As such, it's necessary to extend the current methods where all contextualized embeddings can be jointly pre-trained for the retrieval tasks. In this work, we propose a novel pre-training method called Duplex Masked Auto-Encoder, a.k.a. DupMAE. It is designed to improve the quality of semantic representation where all contextualized embeddings of the pre-trained model can be leveraged. It takes advantage of two complementary auto-encoding tasks: one reconstructs the input sentence on top of the [CLS] embedding; the other one predicts the bag-of-words feature of the input sentence based on the ordinary tokens' embeddings. The two tasks are jointly conducted to train a unified encoder, where the whole contextualized embeddings are aggregated in a compact way to produce the final semantic representation. DupMAE is simple but empirically competitive: it substantially improves the pre-trained model's representation capability and transferability, where superior retrieval performances can be achieved on popular benchmarks, like MS MARCO and BEIR.
Shitao Xiao, Zheng Liu, Yingxia Shao, Zhao Cao
75
Python
5/21/2023 Improving Language Model Negotiation with Self-Play and In-Context Learning from AI Feedback
We study whether multiple large language models (LLMs) can autonomously improve each other in a negotiation game by playing, reflecting, and criticizing. We are interested in this question because if LLMs were able to improve each other, it would imply the possibility of creating strong AI agents with minimal human intervention. We ask two LLMs to negotiate with each other, playing the roles of a buyer and a seller, respectively. They aim to reach a deal with the buyer targeting a lower price and the seller a higher one. A third language model, playing the critic, provides feedback to a player to improve the player's negotiation strategies. We let the two agents play multiple rounds, using previous negotiation history and AI feedback as in-context demonstrations to improve the model's negotiation strategy iteratively. We use different LLMs (GPT and Claude) for different roles and use the deal price as the evaluation metric. Our experiments reveal multiple intriguing findings: (1) Only a subset of the language models we consider can self-play and improve the deal price from AI feedback, weaker models either do not understand the game's rules or cannot incorporate AI feedback for further improvement. (2) Models' abilities to learn from the feedback differ when playing different roles. For example, it is harder for Claude-instant to improve as the buyer than as the seller. (3) When unrolling the game to multiple rounds, stronger agents can consistently improve their performance by meaningfully using previous experiences and iterative AI feedback, yet have a higher risk of breaking the deal. We hope our work provides insightful initial explorations of having models autonomously improve each other with game playing and AI feedback.
Yao Fu, Hao Peng, Tushar Khot, Mirella Lapata
74
Jupyter Notebook
5/21/2023 VALOR: Vision-Audio-Language Omni-Perception Pretraining Model and Dataset
In this paper, we propose a Vision-Audio-Language Omni-peRception pretraining model (VALOR) for multi-modal understanding and generation. Different from widely-studied vision-language pretraining models, VALOR jointly models relationships of vision, audio and language in an end-to-end manner. It contains three separate encoders for single modality representations, and a decoder for multimodal conditional text generation. We design two pretext tasks to pretrain VALOR model, including Multimodal Grouping Alignment (MGA) and Multimodal Grouping Captioning (MGC). MGA projects vision, language and audio to the same common space, building vision-language, audio-language and audiovisual-language alignment simultaneously. MGC learns how to generate text tokens in conditions of vision, audio or their both. To promote vision-audio-language pretraining research, we construct a large-scale high-quality tri-modality dataset named VALOR-1M, which contains 1M audiable videos with human annotated audiovisual captions. Extensive experiments show that VALOR can learn strong multimodal correlations and be generalized to various downstream tasks (e.g., retrieval, captioning and question answering), with different input modalities (e.g., vision-language, audio-language and audiovisual-language). VALOR achieves new state-of-the-art performances on series of public cross-modality benchmarks. Code and data are available at project page this https URL.
Sihan Chen, Xingjian He, Longteng Guo, Xinxin Zhu, Weining Wang, Jinhui Tang, Jing Liu
73
Python
5/21/2023 Is ChatGPT Good at Search? Investigating Large Language Models as Re-Ranking Agent
Large Language Models (LLMs) have demonstrated a remarkable ability to generalize zero-shot to various language-related tasks. This paper focuses on the study of exploring generative LLMs such as ChatGPT and GPT-4 for relevance ranking in Information Retrieval (IR). Surprisingly, our experiments reveal that properly instructed ChatGPT and GPT-4 can deliver competitive, even superior results than supervised methods on popular IR benchmarks. Notably, GPT-4 outperforms the fully fine-tuned monoT5-3B on MS MARCO by an average of 2.7 nDCG on TREC datasets, an average of 2.3 nDCG on eight BEIR datasets, and an average of 2.7 nDCG on ten low-resource languages Mr.TyDi. Subsequently, we delve into the potential for distilling the ranking capabilities of ChatGPT into a specialized model. Our small specialized model that trained on 10K ChatGPT generated data outperforms monoT5 trained on 400K annotated MS MARCO data on BEIR. The code to reproduce our results is available at this http URL
Weiwei Sun, Lingyong Yan, Xinyu Ma, Pengjie Ren, Dawei Yin, Zhaochun Ren
68
Python
5/21/2023 Multimodal Procedural Planning via Dual Text-Image Prompting
Embodied agents have achieved prominent performance in following human instructions to complete tasks. However, the potential of providing instructions informed by texts and images to assist humans in completing tasks remains underexplored. To uncover this capability, we present the multimodal procedural planning (MPP) task, in which models are given a high-level goal and generate plans of paired text-image steps, providing more complementary and informative guidance than unimodal plans. The key challenges of MPP are to ensure the informativeness, temporal coherence,and accuracy of plans across modalities. To tackle this, we propose Text-Image Prompting (TIP), a dual-modality prompting method that jointly leverages zero-shot reasoning ability in large language models (LLMs) and compelling text-to-image generation ability from diffusion-based models. TIP improves the interaction in the dual modalities using Text-to-Image Bridge and Image-to-Text Bridge, allowing LLMs to guide the textual-grounded image plan generation and leveraging the descriptions of image plans to ground the textual plan reversely. To address the lack of relevant datasets, we collect WIKIPLAN and RECIPEPLAN as a testbed for MPP. Our results show compelling human preferences and automatic scores against unimodal and multimodal baselines on WIKIPLAN and RECIPEPLAN in terms of informativeness, temporal coherence, and plan accuracy. Our code and data: this https URL.
Yujie Lu, Pan Lu, Zhiyu Chen, Wanrong Zhu, Xin Eric Wang, William Yang Wang
61
Python
5/21/2023 Evaluating statistical language models as pragmatic reasoners
The relationship between communicated language and intended meaning is often probabilistic and sensitive to context. Numerous strategies attempt to estimate such a mapping, often leveraging recursive Bayesian models of communication. In parallel, large language models (LLMs) have been increasingly applied to semantic parsing applications, tasked with inferring logical representations from natural language. While existing LLM explorations have been largely restricted to literal language use, in this work, we evaluate the capacity of LLMs to infer the meanings of pragmatic utterances. Specifically, we explore the case of threshold estimation on the gradable adjective ``strong'', contextually conditioned on a strength prior, then extended to composition with qualification, negation, polarity inversion, and class comparison. We find that LLMs can derive context-grounded, human-like distributions over the interpretations of several complex pragmatic utterances, yet struggle composing with negation. These results inform the inferential capacity of statistical language models, and their use in pragmatic and semantic parsing applications. All corresponding code is made publicly available (this https URL).
Benjamin Lipkin, Lionel Wong, Gabriel Grand, Joshua B Tenenbaum
60
Python
5/21/2023 Pre-Training to Learn in Context
In-context learning, where pre-trained language models learn to perform tasks from task examples and instructions in their contexts, has attracted much attention in the NLP community. However, the ability of in-context learning is not fully exploited because language models are not explicitly trained to learn in context. To this end, we propose PICL (Pre-training for In-Context Learning), a framework to enhance the language models' in-context learning ability by pre-training the model on a large collection of "intrinsic tasks" in the general plain-text corpus using the simple language modeling objective. PICL encourages the model to infer and perform tasks by conditioning on the contexts while maintaining task generalization of pre-trained models. We evaluate the in-context learning performance of the model trained with PICL on seven widely-used text classification datasets and the Super-NaturalInstrctions benchmark, which contains 100+ NLP tasks formulated to text generation. Our experiments show that PICL is more effective and task-generalizable than a range of baselines, outperforming larger language models with nearly 4x parameters. The code is publicly available at this https URL.
Yuxian Gu, Li Dong, Furu Wei, Minlie Huang
54
Python
5/21/2023 From Zero to Hero: Examining the Power of Symbolic Tasks in Instruction Tuning
Fine-tuning language models on tasks with instructions has demonstrated potential in facilitating zero-shot generalization to unseen tasks. In this paper, we introduce a straightforward yet effective method for enhancing instruction tuning by employing symbolic tasks. Compared to crowdsourced human tasks or model-generated tasks, symbolic tasks present a unique advantage as they can be easily generated in vast quantities, theoretically providing an infinite supply of high-quality training instances. To explore the potential of symbolic tasks, we carry out an extensive case study on the representative symbolic task of SQL execution. Empirical results on various benchmarks validate that the integration of SQL execution leads to significant improvements in zero-shot scenarios, particularly in table reasoning. Notably, our 3B model surpasses both the 175B GPT-3 and ChatGPT in zero-shot table reasoning across four benchmarks. Furthermore, experimental results on BBH (27 tasks) and MMLU (57 tasks) reveal that language models can be enhanced through symbolic tasks without compromising their generality. We hope that our paper serves as a catalyst, inspiring increased efforts to incorporate symbolic tasks in instruction tuning.
Qian Liu, Fan Zhou, Zhengbao Jiang, Longxu Dou, Min Lin
52
Python
5/21/2023 Speak, Memory: An Archaeology of Books Known to ChatGPT/GPT-4
In this work, we carry out a data archaeology to infer books that are known to ChatGPT and GPT-4 using a name cloze membership inference query. We find that OpenAI models have memorized a wide collection of copyrighted materials, and that the degree of memorization is tied to the frequency with which passages of those books appear on the web. The ability of these models to memorize an unknown set of books complicates assessments of measurement validity for cultural analytics by contaminating test data; we show that models perform much better on memorized books than on non-memorized books for downstream tasks. We argue that this supports a case for open models whose training data is known.
Kent K. Chang, Mackenzie Cramer, Sandeep Soni, David Bamman
46
Python
5/21/2023 On the Hidden Mystery of OCR in Large Multimodal Models
Large models have recently played a dominant role in natural language processing and multimodal vision-language learning. It remains less explored about their efficacy in text-related visual tasks. We conducted a comprehensive study of existing publicly available multimodal models, evaluating their performance in text recognition, text-based visual question answering, and key information extraction. Our findings reveal strengths and weaknesses in these models, which primarily rely on semantic understanding for word recognition and exhibit inferior perception of individual character shapes. They also display indifference towards text length and have limited capabilities in detecting fine-grained features in images. Consequently, these results demonstrate that even the current most powerful large multimodal models cannot match domain-specific methods in traditional text tasks and face greater challenges in more complex tasks. Most importantly, the baseline results showcased in this study could provide a foundational framework for the conception and assessment of innovative strategies targeted at enhancing zero-shot multimodal techniques. Evaluation pipeline will be available at this https URL.
Yuliang Liu, Zhang Li, Hongliang Li, Wenwen Yu, Mingxin Huang, Dezhi Peng, Mingyu Liu, Mingrui Chen, Chunyuan Li, Lianwen Jin, Xiang Bai
41
Python
5/21/2023 MER 2023: Multi-label Learning, Modality Robustness, and Semi-Supervised Learning
Over the past few decades, multimodal emotion recognition has made remarkable progress with the development of deep learning. However, existing technologies are difficult to meet the demand for practical applications. To improve the robustness, we launch a Multimodal Emotion Recognition Challenge (MER 2023) to motivate global researchers to build innovative technologies that can further accelerate and foster research. For this year's challenge, we present three distinct sub-challenges: (1) MER-MULTI, in which participants recognize both discrete and dimensional emotions; (2) MER-NOISE, in which noise is added to test videos for modality robustness evaluation; (3) MER-SEMI, which provides large amounts of unlabeled samples for semi-supervised learning. In this paper, we test a variety of multimodal features and provide a competitive baseline for each sub-challenge. Our system achieves 77.57% on the F1 score and 0.82 on the mean squared error (MSE) for MER-MULTI, 69.82% on the F1 score and 1.12 on MSE for MER-NOISE, and 86.75% on the F1 score for MER-SEMI, respectively. Baseline code is available at this https URL.
Zheng Lian, Haiyang Sun, Licai Sun, Jinming Zhao, Ye Liu, Bin Liu, Jiangyan Yi, Meng Wang, Erik Cambria, Guoying Zhao, Björn W. Schuller, Jianhua Tao
39
Python
5/21/2023 Toeplitz Neural Network for Sequence Modeling
Sequence modeling has important applications in natural language processing and computer vision. Recently, the transformer-based models have shown strong performance on various sequence modeling tasks, which rely on attention to capture pairwise token relations, and position embedding to inject positional information. While showing good performance, the transformer models are inefficient to scale to long input sequences, mainly due to the quadratic space-time complexity of attention. To overcome this inefficiency, we propose to model sequences with a relative position encoded Toeplitz matrix and use a Toeplitz matrix-vector production trick to reduce the space-time complexity of the sequence modeling to log linear. A lightweight sub-network called relative position encoder is proposed to generate relative position coefficients with a fixed budget of parameters, enabling the proposed Toeplitz neural network to deal with varying sequence lengths. In addition, despite being trained on 512-token sequences, our model can extrapolate input sequence length up to 14K tokens in inference with consistent performance. Extensive experiments on autoregressive and bidirectional language modeling, image modeling, and the challenging Long-Range Arena benchmark show that our method achieves better performance than its competitors in most downstream tasks while being significantly faster. The code is available at this https URL.
Zhen Qin, Xiaodong Han, Weixuan Sun, Bowen He, Dong Li, Dongxu Li, Yuchao Dai, Lingpeng Kong, Yiran Zhong
38
Python
5/21/2023 Discourse Centric Evaluation of Machine Translation with a Densely Annotated Parallel Corpus
Several recent papers claim human parity at sentence-level Machine Translation (MT), especially in high-resource languages. Thus, in response, the MT community has, in part, shifted its focus to document-level translation. Translating documents requires a deeper understanding of the structure and meaning of text, which is often captured by various kinds of discourse phenomena such as consistency, coherence, and cohesion. However, this renders conventional sentence-level MT evaluation benchmarks inadequate for evaluating the performance of context-aware MT systems. This paper presents a new dataset with rich discourse annotations, built upon the large-scale parallel corpus BWB introduced in Jiang et al. (2022). The new BWB annotation introduces four extra evaluation aspects, i.e., entity, terminology, coreference, and quotation, covering 15,095 entity mentions in both languages. Using these annotations, we systematically investigate the similarities and differences between the discourse structures of source and target languages, and the challenges they pose to MT. We discover that MT outputs differ fundamentally from human translations in terms of their latent discourse structures. This gives us a new perspective on the challenges and opportunities in document-level MT. We make our resource publicly available to spur future research in document-level MT and the generalization to other language translation tasks.
Yuchen Eleanor Jiang, Tianyu Liu, Shuming Ma, Dongdong Zhang, Mrinmaya Sachan, Ryan Cotterell
37
Python
5/21/2023 Bot or Human? Detecting ChatGPT Imposters with A Single Question
Large language models like ChatGPT have recently demonstrated impressive capabilities in natural language understanding and generation, enabling various applications including translation, essay writing, and chit-chatting. However, there is a concern that they can be misused for malicious purposes, such as fraud or denial-of-service attacks. Therefore, it is crucial to develop methods for detecting whether the party involved in a conversation is a bot or a human. In this paper, we propose a framework named FLAIR, Finding Large language model Authenticity via a single Inquiry and Response, to detect conversational bots in an online manner. Specifically, we target a single question scenario that can effectively differentiate human users from bots. The questions are divided into two categories: those that are easy for humans but difficult for bots (e.g., counting, substitution, positioning, noise filtering, and ASCII art), and those that are easy for bots but difficult for humans (e.g., memorization and computation). Our approach shows different strengths of these questions in their effectiveness, providing a new way for online service providers to protect themselves against nefarious activities and ensure that they are serving real users. We open-sourced our dataset on this https URL and welcome contributions from the community to enrich such detection datasets.
Hong Wang, Xuan Luo, Weizhi Wang, Xifeng Yan
36
Python
5/21/2023 Prompting the Hidden Talent of Web-Scale Speech Models for Zero-Shot Task Generalization
We investigate the emergent abilities of the recently proposed web-scale speech model Whisper, by adapting it to unseen tasks with prompt engineering. We selected three tasks: audio-visual speech recognition (AVSR), code-switched speech recognition (CS-ASR), and speech translation (ST) on unseen language pairs. We design task-specific prompts, by either leveraging another large-scale model, or simply manipulating the special tokens in the default prompts. Experiments show that compared to the default prompts, our proposed prompts improve performance by 10% to 45% on the three zero-shot tasks, and even outperform SotA supervised models on some datasets. In addition, our experiments reveal many interesting properties of Whisper, including its robustness to prompts, bias on accents, and the multilingual understanding in its latent space. Code is available at this https URL
Puyuan Peng, Brian Yan, Shinji Watanabe, David Harwath
35
Python
5/21/2023 Multi-CrossRE A Multi-Lingual Multi-Domain Dataset for Relation Extraction
Most research in Relation Extraction (RE) involves the English language, mainly due to the lack of multi-lingual resources. We propose Multi-CrossRE, the broadest multi-lingual dataset for RE, including 26 languages in addition to English, and covering six text domains. Multi-CrossRE is a machine translated version of CrossRE (Bassignana and Plank, 2022), with a sub-portion including more than 200 sentences in seven diverse languages checked by native speakers. We run a baseline model over the 26 new datasets and--as sanity check--over the 26 back-translations to English. Results on the back-translated data are consistent with the ones on the original English CrossRE, indicating high quality of the translation and the resulting dataset.
Elisa Bassignana, Filip Ginter, Sampo Pyysalo, Rob van der Goot, Barbara Plank
35
Python
5/21/2023 Evaluating Verifiability in Generative Search Engines
Generative search engines directly generate responses to user queries, along with in-line citations. A prerequisite trait of a trustworthy generative search engine is verifiability, i.e., systems should cite comprehensively (high citation recall; all statements are fully supported by citations) and accurately (high citation precision; every cite supports its associated statement). We conduct human evaluation to audit four popular generative search engines -- Bing Chat, NeevaAI, this http URL, and YouChat -- across a diverse set of queries from a variety of sources (e.g., historical Google user queries, dynamically-collected open-ended questions on Reddit, etc.). We find that responses from existing generative search engines are fluent and appear informative, but frequently contain unsupported statements and inaccurate citations: on average, a mere 51.5% of generated sentences are fully supported by citations and only 74.5% of citations support their associated sentence. We believe that these results are concerningly low for systems that may serve as a primary tool for information-seeking users, especially given their facade of trustworthiness. We hope that our results further motivate the development of trustworthy generative search engines and help researchers and users better understand the shortcomings of existing commercial systems.
Nelson F. Liu, Tianyi Zhang, Percy Liang
35
Python
5/21/2023 NatCS: Eliciting Natural Customer Support Dialogues
Despite growing interest in applications based on natural customer support conversations, there exist remarkably few publicly available datasets that reflect the expected characteristics of conversations in these settings. Existing task-oriented dialogue datasets, which were collected to benchmark dialogue systems mainly in written human-to-bot settings, are not representative of real customer support conversations and do not provide realistic benchmarks for systems that are applied to natural data. To address this gap, we introduce NatCS, a multi-domain collection of spoken customer service conversations. We describe our process for collecting synthetic conversations between customers and agents based on natural language phenomena observed in real conversations. Compared to previous dialogue datasets, the conversations collected with our approach are more representative of real human-to-human conversations along multiple metrics. Finally, we demonstrate potential uses of NatCS, including dialogue act classification and intent induction from conversations as potential applications, showing that dialogue act annotations in NatCS provide more effective training data for modeling real conversations compared to existing synthetic written datasets. We publicly release NatCS to facilitate research in natural dialog systems
James Gung, Emily Moeng, Wesley Rose, Arshit Gupta, Yi Zhang, Saab Mansour
32
Python
5/21/2023 SemEval-2023 Task 12: Sentiment Analysis for African Languages (AfriSenti-SemEval)
We present the first Africentric SemEval Shared task, Sentiment Analysis for African Languages (AfriSenti-SemEval) - the dataset is available at this https URL. AfriSenti-SemEval is a sentiment classification challenge in 14 African languages - Amharic, Algerian Arabic, Hausa, Igbo, Kinyarwanda, Moroccan Arabic, Mozambican Portuguese, Nigerian Pidgin, Oromo, Swahili, Tigrinya, Twi, Xitsonga, and Yorùbá (Muhammad et al., 2023), using a 3-class labeled data: positive, negative, and neutral. We present three subtasks: (1) Task A: monolingual classification, which received 44 submissions; (2) Task B: multilingual classification, which received 32 submissions; and (3) Task C: zero-shot classification, which received 34 submissions. The best system for tasks A and B was achieved by NLNDE team with 71.31 and 75.06 weighted F1, respectively. UCAS-IIE-NLP achieved the best system on average for task C with 58.15 weighted F1. We describe the various approaches adopted by the top 10 systems and their approaches.
Shamsuddeen Hassan Muhammad, Idris Abdulmumin, Seid Muhie Yimam, David Ifeoluwa Adelani, Ibrahim Sa'id Ahmad, Nedjma Ousidhoum, Abinew Ayele, Saif M. Mohammad, Meriem Beloucif
29
Jupyter Notebook
5/21/2023 LLMScore: Unveiling the Power of Large Language Models in Text-to-Image Synthesis Evaluation
Existing automatic evaluation on text-to-image synthesis can only provide an image-text matching score, without considering the object-level compositionality, which results in poor correlation with human judgments. In this work, we propose LLMScore, a new framework that offers evaluation scores with multi-granularity compositionality. LLMScore leverages the large language models (LLMs) to evaluate text-to-image models. Initially, it transforms the image into image-level and object-level visual descriptions. Then an evaluation instruction is fed into the LLMs to measure the alignment between the synthesized image and the text, ultimately generating a score accompanied by a rationale. Our substantial analysis reveals the highest correlation of LLMScore with human judgments on a wide range of datasets (Attribute Binding Contrast, Concept Conjunction, MSCOCO, DrawBench, PaintSkills). Notably, our LLMScore achieves Kendall's tau correlation with human evaluations that is 58.8% and 31.2% higher than the commonly-used text-image matching metrics CLIP and BLIP, respectively.
Yujie Lu, Xianjun Yang, Xiujun Li, Xin Eric Wang, William Yang Wang
30
Python
5/21/2023 Exploring Human-Like Translation Strategy with Large Language Models
Large language models (LLMs) have demonstrated impressive capabilities in general scenarios, exhibiting a level of aptitude that approaches, in some aspects even surpasses, human-level intelligence. Among their numerous skills, the translation abilities of LLMs have received considerable attention. In contrast to traditional machine translation that focuses solely on source-target mapping, LLM-based translation can potentially mimic the human translation process that takes many preparatory steps to ensure high-quality translation. This work aims to explore this possibility by proposing the MAPS framework, which stands for Multi-Aspect Prompting and Selection. Specifically, we enable LLMs to first analyze the given source text and extract three aspects of translation-related knowledge: keywords, topics and relevant demonstrations to guide the translation process. To filter out the noisy and unhelpful knowledge, we employ a selection mechanism based on quality estimation. Experiments suggest that MAPS brings significant and consistent improvements over text-davinci-003 and Alpaca on eight translation directions from the latest WMT22 test sets. Our further analysis shows that the extracted knowledge is critical in resolving up to 59% of hallucination mistakes in translation. Code is available at this https URL.
Zhiwei He, Tian Liang, Wenxiang Jiao, Zhuosheng Zhang, Yujiu Yang, Rui Wang, Zhaopeng Tu, Shuming Shi, Xing Wang
28
Python
5/21/2023 Don't Stop Pretraining? Make Prompt-based Fine-tuning Powerful Learner
Language models (LMs) trained on vast quantities of unlabelled data have greatly advanced the field of natural language processing (NLP). In this study, we re-visit the widely accepted notion in NLP that continued pre-training LMs on task-related texts improves the performance of fine-tuning (FT) in downstream tasks. Through experiments on eight single-sentence tasks and eight sentence-pair tasks in both semi-supervised and fully-supervised settings, we find that conventional continued pre-training does not consistently provide benefits and can even be detrimental for sentence-pair tasks or when prompt-based FT is used. To tackle these issues, we propose Prompt-based Continued Pre-training (PCP), which combines the idea of instruction tuning with conventional continued pre-training. Our approach aims to improve the performance of prompt-based FT by presenting both task-related texts and prompt templates to LMs through unsupervised pre-training objectives before fine-tuning for the target task. Our empirical evaluations on 21 benchmarks demonstrate that the PCP consistently improves the performance of state-of-the-art prompt-based FT approaches (up to 20.1% absolute) in both semi-supervised and fully-supervised settings, even with only hundreds of unlabelled examples. Additionally, prompt-based FT with the PCP outperforms state-of-the-art semi-supervised approaches with greater simplicity, eliminating the need for an iterative process and extra data augmentation. Our further analysis explores the performance lower bound of the PCP and reveals that the advantages of PCP persist across different sizes of models and datasets.
Zhengxiang Shi, Aldo Lipani
27
Python
5/21/2023 GIFT: Graph-Induced Fine-Tuning for Multi-Party Conversation Understanding
Addressing the issues of who saying what to whom in multi-party conversations (MPCs) has recently attracted a lot of research attention. However, existing methods on MPC understanding typically embed interlocutors and utterances into sequential information flows, or utilize only the superficial of inherent graph structures in MPCs. To this end, we present a plug-and-play and lightweight method named graph-induced fine-tuning (GIFT) which can adapt various Transformer-based pre-trained language models (PLMs) for universal MPC understanding. In detail, the full and equivalent connections among utterances in regular Transformer ignore the sparse but distinctive dependency of an utterance on another in MPCs. To distinguish different relationships between utterances, four types of edges are designed to integrate graph-induced signals into attention mechanisms to refine PLMs originally designed for processing sequential texts. We evaluate GIFT by implementing it into three PLMs, and test the performance on three downstream tasks including addressee recognition, speaker identification and response selection. Experimental results show that GIFT can significantly improve the performance of three PLMs on three downstream tasks and two benchmarks with only 4 additional parameters per encoding layer, achieving new state-of-the-art performance on MPC understanding.
Jia-Chen Gu, Zhen-Hua Ling, Quan Liu, Cong Liu, Guoping Hu
26
Python
5/21/2023 Interpretability at Scale: Identifying Causal Mechanisms in Alpaca
Obtaining human-interpretable explanations of large, general-purpose language models is an urgent goal for AI safety. However, it is just as important that our interpretability methods are faithful to the causal dynamics underlying model behavior and able to robustly generalize to unseen inputs. Distributed Alignment Search (DAS) is a powerful gradient descent method grounded in a theory of causal abstraction that uncovered perfect alignments between interpretable symbolic algorithms and small deep learning models fine-tuned for specific tasks. In the present paper, we scale DAS significantly by replacing the remaining brute-force search steps with learned parameters -- an approach we call DAS. This enables us to efficiently search for interpretable causal structure in large language models while they follow instructions. We apply DAS to the Alpaca model (7B parameters), which, off the shelf, solves a simple numerical reasoning problem. With DAS, we discover that Alpaca does this by implementing a causal model with two interpretable boolean variables. Furthermore, we find that the alignment of neural representations with these variables is robust to changes in inputs and instructions. These findings mark a first step toward deeply understanding the inner-workings of our largest and most widely deployed language models.
Zhengxuan Wu, Atticus Geiger, Christopher Potts, Noah D. Goodman
25
Jupyter Notebook
5/21/2023 Large Language Model Guided Tree-of-Thought
In this paper, we introduce the Tree-of-Thought (ToT) framework, a novel approach aimed at improving the problem-solving capabilities of auto-regressive large language models (LLMs). The ToT technique is inspired by the human mind's approach for solving complex reasoning tasks through trial and error. In this process, the human mind explores the solution space through a tree-like thought process, allowing for backtracking when necessary. To implement ToT as a software system, we augment an LLM with additional modules including a prompter agent, a checker module, a memory module, and a ToT controller. In order to solve a given problem, these modules engage in a multi-round conversation with the LLM. The memory module records the conversation and state history of the problem solving process, which allows the system to backtrack to the previous steps of the thought-process and explore other directions from there. To verify the effectiveness of the proposed technique, we implemented a ToT-based solver for the Sudoku Puzzle. Experimental results show that the ToT framework can significantly increase the success rate of Sudoku puzzle solving. Our implementation of the ToT-based Sudoku solver is available on GitHub: \url{this https URL}.
Jieyi Long
24
Python
5/21/2023 Representation Learning for Person or Entity-centric Knowledge Graphs: An Application in Healthcare
Knowledge graphs (KGs) are a popular way to organise information based on ontologies or schemas and have been used across a variety of scenarios from search to recommendation. Despite advances in KGs, representing knowledge remains a non-trivial task across industries and it is especially challenging in the biomedical and healthcare domains due to complex interdependent relations between entities, heterogeneity, lack of standardization, and sparseness of data. KGs are used to discover diagnoses or prioritize genes relevant to disease, but they often rely on schemas that are not centred around a node or entity of interest, such as a person. Entity-centric KGs are relatively unexplored but hold promise in representing important facets connected to a central node and unlocking downstream tasks beyond graph traversal and reasoning, such as generating graph embeddings and training graph neural networks for a wide range of predictive tasks. This paper presents an end-to-end representation learning framework to extract entity-centric KGs from structured and unstructured data. We introduce a star-shaped ontology to represent the multiple facets of a person and use it to guide KG creation. Compact representations of the graphs are created leveraging graph neural networks and experiments are conducted using different levels of heterogeneity or explicitness. A readmission prediction task is used to evaluate the results of the proposed framework, showing a stable system, robust to missing data, that outperforms a range of baseline machine learning classifiers. We highlight that this approach has several potential applications across domains and is open-sourced. Lastly, we discuss lessons learned, challenges, and next steps for the adoption of the framework in practice.
Christos Theodoropoulos, Natasha Mulligan, Thaddeus Stappenbeck, Joao Bettencourt-Silva
22
Python
5/21/2023 Solving Math Word Problems by Combining Language Models With Symbolic Solvers
Automatically generating high-quality step-by-step solutions to math word problems has many applications in education. Recently, combining large language models (LLMs) with external tools to perform complex reasoning and calculation has emerged as a promising direction for solving math word problems, but prior approaches such as Program-Aided Language model (PAL) are biased towards simple procedural problems and less effective for problems that require declarative reasoning. We propose an approach that combines an LLM that can incrementally formalize word problems as a set of variables and equations with an external symbolic solver that can solve the equations. Our approach achieves comparable accuracy to the original PAL on the GSM8K benchmark of math word problems and outperforms PAL by an absolute 20% on ALGEBRA, a new dataset of more challenging word problems extracted from Algebra textbooks. Our work highlights the benefits of using declarative and incremental representations when interfacing with an external tool for solving complex math word problems. Our data and prompts are publicly available at this https URL.
Joy He-Yueya, Gabriel Poesia, Rose E. Wang, Noah D. Goodman
22
Python
5/21/2023 Few-shot In-context Learning for Knowledge Base Question Answering
Question answering over knowledge bases is considered a difficult problem due to the challenge of generalizing to a wide variety of possible natural language questions. Additionally, the heterogeneity of knowledge base schema items between different knowledge bases often necessitates specialized training for different knowledge base question-answering (KBQA) datasets. To handle questions over diverse KBQA datasets with a unified training-free framework, we propose KB-BINDER, which for the first time enables few-shot in-context learning over KBQA tasks. Firstly, KB-BINDER leverages large language models like Codex to generate logical forms as the draft for a specific question by imitating a few demonstrations. Secondly, KB-BINDER grounds on the knowledge base to bind the generated draft to an executable one with BM25 score matching. The experimental results on four public heterogeneous KBQA datasets show that KB-BINDER can achieve a strong performance with only a few in-context demonstrations. Especially on GraphQA and 3-hop MetaQA, KB-BINDER can even outperform the state-of-the-art trained models. On GrailQA and WebQSP, our model is also on par with other fully-trained models. We believe KB-BINDER can serve as an important baseline for future research. Our code is available at this https URL.
Tianle Li, Xueguang Ma, Alex Zhuang, Yu Gu, Yu Su, Wenhu Chen
22
5/21/2023 Interactive and Explainable Region-guided Radiology Report Generation
The automatic generation of radiology reports has the potential to assist radiologists in the time-consuming task of report writing. Existing methods generate the full report from image-level features, failing to explicitly focus on anatomical regions in the image. We propose a simple yet effective region-guided report generation model that detects anatomical regions and then describes individual, salient regions to form the final report. While previous methods generate reports without the possibility of human intervention and with limited explainability, our method opens up novel clinical use cases through additional interactive capabilities and introduces a high degree of transparency and explainability. Comprehensive experiments demonstrate our method's effectiveness in report generation, outperforming previous state-of-the-art models, and highlight its interactive capabilities. The code and checkpoints are available at this https URL .
Tim Tanida, Philip Muller, Georgios Kaissis, Daniel Rueckert
21
Python
5/21/2023 RL4F: Generating Natural Language Feedback with Reinforcement Learning for Repairing Model Outputs
Despite their unprecedented success, even the largest language models make mistakes. Similar to how humans learn and improve using feedback, previous work proposed providing language models with natural language feedback to guide them in repairing their outputs. Because human-generated critiques are expensive to obtain, researchers have devised learned critique generators in lieu of human critics while assuming one can train downstream models to utilize generated feedback. However, this approach does not apply to black-box or limited access models such as ChatGPT, as they cannot be fine-tuned. Moreover, in the era of large general-purpose language agents, fine-tuning is neither computationally nor spatially efficient as it results in multiple copies of the network. In this work, we introduce RL4F (Reinforcement Learning for Feedback), a multi-agent collaborative framework where the critique generator is trained to maximize end-task performance of GPT-3, a fixed model more than 200 times its size. RL4F produces critiques that help GPT-3 revise its outputs. We study three datasets for action planning, summarization and alphabetization and show improvements (~5% on average) in multiple text similarity metrics over strong baselines across all three tasks.
Afra Feyza Akyurek, Ekin Akyurek, Aman Madaan, Ashwin Kalyan, Peter Clark, Derry Wijaya, Niket Tandon
19
Python
5/21/2023 DisCo-CLIP: A Distributed Contrastive Loss for Memory Efficient CLIP Training
We propose DisCo-CLIP, a distributed memory-efficient CLIP training approach, to reduce the memory consumption of contrastive loss when training contrastive learning models. Our approach decomposes the contrastive loss and its gradient computation into two parts, one to calculate the intra-GPU gradients and the other to compute the inter-GPU gradients. According to our decomposition, only the intra-GPU gradients are computed on the current GPU, while the inter-GPU gradients are collected via all_reduce from other GPUs instead of being repeatedly computed on every GPU. In this way, we can reduce the GPU memory consumption of contrastive loss computation from $\bigO(B^2)$ to $\bigO(\frac{B^2}{N})$, where $B$ and $N$ are the batch size and the number of GPUs used for training. Such a distributed solution is mathematically equivalent to the original non-distributed contrastive loss computation, without sacrificing any computation accuracy. It is particularly efficient for large-batch CLIP training. For instance, DisCo-CLIP can enable contrastive training of a ViT-B/32 model with a batch size of 32K or 196K using 8 or 64 A100 40GB GPUs, compared with the original CLIP solution which requires 128 A100 40GB GPUs to train a ViT-B/32 model with a batch size of 32K. The code will be released at this https URL
Yihao Chen, Xianbiao Qi, Jianan Wang, Lei Zhang
19
5/21/2023 Decomposition Enhances Reasoning via Self-Evaluation Guided Decoding
We endow Large Language Models (LLMs) with fine-grained self-evaluation to refine multi-step reasoning inference. We propose an effective prompting approach that integrates self-evaluation guidance through stochastic beam search. Our approach explores the reasoning search space using a well-calibrated automatic criterion. This enables an efficient search to produce higher-quality final predictions. With the self-evaluation guided stochastic beam search, we also balance the quality-diversity trade-off in the generation of reasoning chains. This allows our approach to adapt well with majority voting and surpass the corresponding Codex-backboned baselines by $6.34\%$, $9.56\%$, and $5.46\%$ on the GSM8K, AQuA, and StrategyQA benchmarks, respectively, in few-shot accuracy. Analysis of our decompositional reasoning finds it pinpoints logic failures and leads to higher consistency and robustness. Our code is publicly available at this https URL.
Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, Xu Zhao, Min-Yen Kan, Junxian He, Qizhe Xie
19
Python
5/21/2023 Poisoning Language Models During Instruction Tuning
Instruction-tuned LMs such as ChatGPT, FLAN, and InstructGPT are finetuned on datasets that contain user-submitted examples, e.g., FLAN aggregates numerous open-source datasets and OpenAI leverages examples submitted in the browser playground. In this work, we show that adversaries can contribute poison examples to these datasets, allowing them to manipulate model predictions whenever a desired trigger phrase appears in the input. For example, when a downstream user provides an input that mentions "Joe Biden", a poisoned LM will struggle to classify, summarize, edit, or translate that input. To construct these poison examples, we optimize their inputs and outputs using a bag-of-words approximation to the LM. We evaluate our method on open-source instruction-tuned LMs. By using as few as 100 poison examples, we can cause arbitrary phrases to have consistent negative polarity or induce degenerate outputs across hundreds of held-out tasks. Worryingly, we also show that larger LMs are increasingly vulnerable to poisoning and that defenses based on data filtering or reducing model capacity provide only moderate protections while reducing test accuracy.
Alexander Wan, Eric Wallace, Sheng Shen, Dan Klein
18
Python
5/21/2023 Huatuo-26M, a Large-scale Chinese Medical QA Dataset
In this paper, we release a largest ever medical Question Answering (QA) dataset with 26 million QA pairs. We benchmark many existing approaches in our dataset in terms of both retrieval and generation. Experimental results show that the existing models perform far lower than expected and the released dataset is still challenging in the pre-trained language model era. Moreover, we also experimentally show the benefit of the proposed dataset in many aspects: (i) trained models for other QA datasets in a zero-shot fashion; and (ii) as external knowledge for retrieval-augmented generation (RAG); and (iii) improving existing pre-trained language models by using the QA pairs as a pre-training corpus in continued training manner. We believe that this dataset will not only contribute to medical research but also facilitate both the patients and clinical doctors. See \url{this https URL}.
Jianquan Li, Xidong Wang, Xiangbo Wu, Zhiyi Zhang, Xiaolong Xu, Jie Fu, Prayag Tiwari, Xiang Wan, Benyou Wang
17
5/21/2023 Large Language Models are Zero-Shot Rankers for Recommender Systems
Recently, large language models (LLMs) (e.g. GPT-4) have demonstrated impressive general-purpose task-solving abilities, including the potential to approach recommendation tasks. Along this line of research, this work aims to investigate the capacity of LLMs that act as the ranking model for recommender systems. To conduct our empirical study, we first formalize the recommendation problem as a conditional ranking task, considering sequential interaction histories as conditions and the items retrieved by the candidate generation model as candidates. We adopt a specific prompting approach to solving the ranking task by LLMs: we carefully design the prompting template by including the sequential interaction history, the candidate items, and the ranking instruction. We conduct extensive experiments on two widely-used datasets for recommender systems and derive several key findings for the use of LLMs in recommender systems. We show that LLMs have promising zero-shot ranking abilities, even competitive to or better than conventional recommendation models on candidates retrieved by multiple candidate generators. We also demonstrate that LLMs struggle to perceive the order of historical interactions and can be affected by biases like position bias, while these issues can be alleviated via specially designed prompting and bootstrapping strategies. The code to reproduce this work is available at this https URL.
Yupeng Hou, Junjie Zhang, Zihan Lin, Hongyu Lu, Ruobing Xie, Julian McAuley, Wayne Xin Zhao
16
Python
5/21/2023 LeTI: Learning to Generate from Textual Interactions
Finetuning pre-trained language models (LMs) enhances the models' capabilities. Prior techniques fine-tune a pre-trained LM on input-output pairs (e.g., instruction fine-tuning), or with numerical rewards that gauge the quality of its outputs (e.g., reinforcement learning from human feedback). We explore LMs' potential to learn from textual interactions (LeTI) that not only check their correctness with binary labels, but also pinpoint and explain errors in their outputs through textual feedback. Our investigation focuses on the code generation task, where the model produces code pieces in response to natural language instructions. This setting invites a natural and scalable way to acquire the textual feedback: the error messages and stack traces from code execution using a Python interpreter. LeTI iteratively fine-tunes the model, using the LM objective, on a concatenation of natural language instructions, LM-generated programs, and textual feedback, which is only provided when the generated program fails to solve the task. Prepended to this fine-tuning text, a binary reward token is used to differentiate correct and buggy solutions. On MBPP, a code generation dataset, LeTI substantially improves the performance of two base LMs of different scales. LeTI requires no ground-truth outputs for training and even outperforms a fine-tuned baseline that does. LeTI's strong performance generalizes to other datasets. Trained on MBPP, it achieves comparable or better performance than the base LMs on unseen problems in HumanEval. Furthermore, compared to binary feedback, we observe that textual feedback leads to improved generation quality and sample efficiency, achieving the same performance with fewer than half of the gradient steps. LeTI is equally applicable in natural language tasks when they can be formulated as code generation, which we empirically verified on event argument extraction.
Xingyao Wang, Hao Peng, Reyhaneh Jabbarvand, Heng Ji
17
Python
5/21/2023 SLTUNET: A Simple Unified Model for Sign Language Translation
Despite recent successes with neural models for sign language translation (SLT), translation quality still lags behind spoken languages because of the data scarcity and modality gap between sign video and text. To address both problems, we investigate strategies for cross-modality representation sharing for SLT. We propose SLTUNET, a simple unified neural model designed to support multiple SLTrelated tasks jointly, such as sign-to-gloss, gloss-to-text and sign-to-text translation. Jointly modeling different tasks endows SLTUNET with the capability to explore the cross-task relatedness that could help narrow the modality gap. In addition, this allows us to leverage the knowledge from external resources, such as abundant parallel data used for spoken-language machine translation (MT). We show in experiments that SLTUNET achieves competitive and even state-of-the-art performance on PHOENIX-2014T and CSL-Daily when augmented with MT data and equipped with a set of optimization techniques. We further use the DGS Corpus for end-to-end SLT for the first time. It covers broader domains with a significantly larger vocabulary, which is more challenging and which we consider to allow for a more realistic assessment of the current state of SLT than the former two. Still, SLTUNET obtains improved results on the DGS Corpus. Code is available at this https URL.
Biao Zhang, Mathias Muller, Rico Sennrich
15
Python
5/21/2023 Stance Detection With Supervised, Zero-Shot, and Few-Shot Applications
Stance detection is the identification of an author's beliefs about a subject from a document. Researchers widely rely on sentiment analysis to accomplish this. However, recent research has show that sentiment analysis is only loosely correlated with stance, if at all. This paper advances methods in text analysis by precisely defining the task of stance detection, providing a generalized framework for the task, and then presenting three distinct approaches for performing stance detection: supervised classification, zero-shot classification with NLI classifiers, and in-context learning. In doing so, I demonstrate how zero-shot and few-shot language classifiers can replace human labelers for a variety of tasks and discuss how their application and limitations differ from supervised classifiers. Finally, I demonstrate an application of zero-shot stance detection by replicating Block Jr et al. (2022).
Michael Burnham
15
Jupyter Notebook
5/21/2023 Smart Word Suggestions for Writing Assistance
Enhancing word usage is a desired feature for writing assistance. To further advance research in this area, this paper introduces "Smart Word Suggestions" (SWS) task and benchmark. Unlike other works, SWS emphasizes end-to-end evaluation and presents a more realistic writing assistance scenario. This task involves identifying words or phrases that require improvement and providing substitution suggestions. The benchmark includes human-labeled data for testing, a large distantly supervised dataset for training, and the framework for evaluation. The test data includes 1,000 sentences written by English learners, accompanied by over 16,000 substitution suggestions annotated by 10 native speakers. The training dataset comprises over 3.7 million sentences and 12.7 million suggestions generated through rules. Our experiments with seven baselines demonstrate that SWS is a challenging task. Based on experimental analysis, we suggest potential directions for future research on SWS. The dataset and related codes is available at this https URL.
Chenshuo Wang, Shaoguang Mao, Tao Ge, Wenshan Wu, Xun Wang, Yan Xia, Jonathan Tien, Dongyan Zhao
14
Python
5/21/2023 Diffusion Explainer: Visual Explanation for Text-to-image Stable Diffusion
Diffusion-based generative models' impressive ability to create convincing images has captured global attention. However, their complex internal structures and operations often make them difficult for non-experts to understand. We present Diffusion Explainer, the first interactive visualization tool that explains how Stable Diffusion transforms text prompts into images. Diffusion Explainer tightly integrates a visual overview of Stable Diffusion's complex components with detailed explanations of their underlying operations, enabling users to fluidly transition between multiple levels of abstraction through animations and interactive elements. By comparing the evolutions of image representations guided by two related text prompts over refinement timesteps, users can discover the impact of prompts on image generation. Diffusion Explainer runs locally in users' web browsers without the need for installation or specialized hardware, broadening the public's education access to modern AI techniques. Our open-sourced tool is available at: this https URL. A video demo is available at this https URL.
Seongmin Lee, Benjamin Hoover, Hendrik Strobelt, Zijie J. Wang, ShengYun Peng, Austin Wright, Kevin Li, Haekyu Park, Haoyang Yang, Duen Horng Chau
14
JavaScript
5/21/2023 Distilling Script Knowledge from Large Language Models for Constrained Language Planning
In everyday life, humans often plan their actions by following step-by-step instructions in the form of goal-oriented scripts. Previous work has exploited language models (LMs) to plan for abstract goals of stereotypical activities (e.g., "make a cake"), but leaves more specific goals with multi-facet constraints understudied (e.g., "make a cake for diabetics"). In this paper, we define the task of constrained language planning for the first time. We propose an overgenerate-then-filter approach to improve large language models (LLMs) on this task, and use it to distill a novel constrained language planning dataset, CoScript, which consists of 55,000 scripts. Empirical results demonstrate that our method significantly improves the constrained language planning ability of LLMs, especially on constraint faithfulness. Furthermore, CoScript is demonstrated to be quite effective in endowing smaller LMs with constrained language planning ability.
Siyu Yuan, Jiangjie Chen, Ziquan Fu, Xuyang Ge, Soham Shah, Charles Robert Jankowski, Deqing Yang, Yanghua Xiao
14
5/21/2023 Improving Contrastive Learning of Sentence Embeddings from AI Feedback
Contrastive learning has become a popular approach in natural language processing, particularly for the learning of sentence embeddings. However, the discrete nature of natural language makes it difficult to ensure the quality of positive and negative sample pairs generated through data augmentation methods. Although supervised contrastive learning can produce more accurate sample pairs with human feedback labels, it still lacks fine-grained training signals. In this paper, we propose to improve \textbf{C}ontrastive \textbf{L}earning of sentence embeddings from \textbf{AI} \textbf{F}eedback \textbf{(CLAIF)}. Our method utilizes AI feedback from large pre-trained language models (LLMs) to construct sample pairs with fine-grained sample similarity scores to improve contrastive learning. Besides, we combine human feedback and AI feedback to provide better supervision signals for supervised contrastive learning of sentence embeddings. Experimental results show that our method achieves state-of-the-art performance on several semantic textual similarity (STS) and transfer learning tasks compared to other unsupervised and supervised contrastive learning methods.
Qinyuan Cheng, Xiaogui Yang, Tianxiang Sun, Linyang Li, Xipeng Qiu
14
5/21/2023 Residual Prompt Tuning: Improving Prompt Tuning with Residual Reparameterization
Prompt tuning is one of the successful approaches for parameter-efficient tuning of pre-trained language models. Despite being arguably the most parameter-efficient (tuned soft prompts constitute <0.1% of total parameters), it typically performs worse than other efficient tuning methods and is quite sensitive to hyper-parameters. In this work, we introduce Residual Prompt Tuning - a simple and efficient method that significantly improves the performance and stability of prompt tuning. We propose to reparameterize soft prompt embeddings using a shallow network with a residual connection. Our experiments show that Residual Prompt Tuning significantly outperforms prompt tuning on SuperGLUE benchmark. Notably, our method reaches +7 points improvement over prompt tuning with T5-Base and allows to reduce the prompt length by 10x without hurting performance. In addition, we show that our approach is robust to the choice of learning rate and prompt initialization, and is effective in few-shot settings.
Anastasia Razdaibiedina, Yuning Mao, Rui Hou, Madian Khabsa, Mike Lewis, Jimmy Ba, Amjad Almahairi
13
Python
5/21/2023 THUIR@COLIEE 2023: Incorporating Structural Knowledge into Pre-trained Language Models for Legal Case Retrieval
Legal case retrieval techniques play an essential role in modern intelligent legal systems. As an annually well-known international competition, COLIEE is aiming to achieve the state-of-the-art retrieval model for legal texts. This paper summarizes the approach of the championship team THUIR in COLIEE 2023. To be specific, we design structure-aware pre-trained language models to enhance the understanding of legal cases. Furthermore, we propose heuristic pre-processing and post-processing approaches to reduce the influence of irrelevant messages. In the end, learning-to-rank methods are employed to merge features with different dimensions. Experimental results demonstrate the superiority of our proposal. Official results show that our run has the best performance among all submissions. The implementation of our method can be found at this https URL.
Haitao Li, Weihang Su, Changyue Wang, Yueyue Wu, Qingyao Ai, Yiqun Liu
13
Python
5/21/2023 THUIR@COLIEE 2023: More Parameters and Legal Knowledge for Legal Case Entailment
This paper describes the approach of the THUIR team at the COLIEE 2023 Legal Case Entailment task. This task requires the participant to identify a specific paragraph from a given supporting case that entails the decision for the query case. We try traditional lexical matching methods and pre-trained language models with different sizes. Furthermore, learning-to-rank methods are employed to further improve performance. However, learning-to-rank is not very robust on this task. which suggests that answer passages cannot simply be determined with information retrieval techniques. Experimental results show that more parameters and legal knowledge contribute to the legal case entailment task. Finally, we get the third place in COLIEE 2023. The implementation of our method can be found at this https URL.
Haitao Li, Changyue Wang, Weihang Su, Yueyue Wu, Qingyao Ai, Yiqun Liu
13
Python
5/21/2023 SUR-adapter: Enhancing Text-to-Image Pre-trained Diffusion Models with Large Language Models
Diffusion models, which have emerged to become popular text-to-image generation models, can produce high-quality and content-rich images guided by textual prompts. However, there are limitations to semantic understanding and commonsense reasoning in existing models when the input prompts are concise narrative, resulting in low-quality image generation. To improve the capacities for narrative prompts, we propose a simple-yet-effective parameter-efficient fine-tuning approach called the Semantic Understanding and Reasoning adapter (SUR-adapter) for pre-trained diffusion models. To reach this goal, we first collect and annotate a new dataset SURD which consists of more than 57,000 semantically corrected multi-modal samples. Each sample contains a simple narrative prompt, a complex keyword-based prompt, and a high-quality image. Then, we align the semantic representation of narrative prompts to the complex prompts and transfer knowledge of large language models (LLMs) to our SUR-adapter via knowledge distillation so that it can acquire the powerful semantic understanding and reasoning capabilities to build a high-quality textual semantic representation for text-to-image generation. We conduct experiments by integrating multiple LLMs and popular pre-trained diffusion models to show the effectiveness of our approach in enabling diffusion models to understand and reason concise natural language without image quality degradation. Our approach can make text-to-image diffusion models easier to use with better user experience, which demonstrates our approach has the potential for further advancing the development of user-friendly text-to-image generation models by bridging the semantic gap between simple narrative prompts and complex keyword-based prompts.
Shanshan Zhong, Zhongzhan Huang, Wushao Wen, Jinghui Qin, Liang Lin
13
Python
5/21/2023 The MuSe 2023 Multimodal Sentiment Analysis Challenge: Mimicked Emotions, Cross-Cultural Humour, and Personalisation
The MuSe 2023 is a set of shared tasks addressing three different contemporary multimodal affect and sentiment analysis problems: In the Mimicked Emotions Sub-Challenge (MuSe-Mimic), participants predict three continuous emotion targets. This sub-challenge utilises the Hume-Vidmimic dataset comprising of user-generated videos. For the Cross-Cultural Humour Detection Sub-Challenge (MuSe-Humour), an extension of the Passau Spontaneous Football Coach Humour (Passau-SFCH) dataset is provided. Participants predict the presence of spontaneous humour in a cross-cultural setting. The Personalisation Sub-Challenge (MuSe-Personalisation) is based on the Ulm-Trier Social Stress Test (Ulm-TSST) dataset, featuring recordings of subjects in a stressed situation. Here, arousal and valence signals are to be predicted, whereas parts of the test labels are made available in order to facilitate personalisation. MuSe 2023 seeks to bring together a broad audience from different research communities such as audio-visual emotion recognition, natural language processing, signal processing, and health informatics. In this baseline paper, we introduce the datasets, sub-challenges, and provided feature sets. As a competitive baseline system, a Gated Recurrent Unit (GRU)-Recurrent Neural Network (RNN) is employed. On the respective sub-challenges' test datasets, it achieves a mean (across three continuous intensity targets) Pearson's Correlation Coefficient of .4727 for MuSe-Mimic, an Area Under the Curve (AUC) value of .8310 for MuSe-Humor and Concordance Correlation Coefficient (CCC) values of .7482 for arousal and .7827 for valence in the MuSe-Personalisation sub-challenge.
Lukas Christ, Shahin Amiriparian, Alice Baird, Alexander Kathan, Niklas Müller, Steffen Klug, Chris Gagne, Panagiotis Tzirakis, Eva-Maria Meßner, Andreas König, Alan Cowen, Erik Cambria, Björn W. Schuller
12
Python
5/21/2023 OpenSLU: A Unified, Modularized, and Extensible Toolkit for Spoken Language Understanding
Spoken Language Understanding (SLU) is one of the core components of a task-oriented dialogue system, which aims to extract the semantic meaning of user queries (e.g., intents and slots). In this work, we introduce OpenSLU, an open-source toolkit to provide a unified, modularized, and extensible toolkit for spoken language understanding. Specifically, OpenSLU unifies 10 SLU models for both single-intent and multi-intent scenarios, which support both non-pretrained and pretrained models simultaneously. Additionally, OpenSLU is highly modularized and extensible by decomposing the model architecture, inference, and learning process into reusable modules, which allows researchers to quickly set up SLU experiments with highly flexible configurations. OpenSLU is implemented based on PyTorch, and released at \url{this https URL}.
Libo Qin, Qiguang Chen, Xiao Xu, Yunlong Feng, Wanxiang Che
12
Python
5/21/2023 AfriQA: Cross-lingual Open-Retrieval Question Answering for African Languages
African languages have far less in-language content available digitally, making it challenging for question answering systems to satisfy the information needs of users. Cross-lingual open-retrieval question answering (XOR QA) systems -- those that retrieve answer content from other languages while serving people in their native language -- offer a means of filling this gap. To this end, we create AfriQA, the first cross-lingual QA dataset with a focus on African languages. AfriQA includes 12,000+ XOR QA examples across 10 African languages. While previous datasets have focused primarily on languages where cross-lingual QA augments coverage from the target language, AfriQA focuses on languages where cross-lingual answer content is the only high-coverage source of answer content. Because of this, we argue that African languages are one of the most important and realistic use cases for XOR QA. Our experiments demonstrate the poor performance of automatic translation and multilingual retrieval methods. Overall, AfriQA proves challenging for state-of-the-art QA models. We hope that the dataset enables the development of more equitable QA technology.
Odunayo Ogundepo, Tajuddeen R. Gwadabe, Clara E. Rivera, Jonathan H. Clark, Sebastian Ruder, David Ifeoluwa Adelani, Bonaventure F. P. Dossou, Abdou Aziz DIOP, Claytone Sikasote, Gilles Hacheme, Happy Buzaaba, Ignatius Ezeani, Rooweither Mabuya, Salomey Osei, Chris Emezue, Albert Njoroge Kahira, Shamsuddeen H. Muhammad, Akintunde Oladipo, Abraham Toluwase Owodunni, Atnafu Lambebo Tonja, Iyanuoluwa Shode, Akari Asai, Tunde Oluwaseyi Ajayi, Clemencia Siro, Steven Arthur, Mofetoluwa Adeyemi, Orevaoghene Ahia, Aremu Anuoluwapo, Oyinkansola Awosan, Chiamaka Chukwuneke, Bernard Opoku, Awokoya Ayodele, Verrah Otiende, Christine Mwase, Boyd Sinkala, Andre Niyongabo Rubungo, Daniel A. Ajisafe, Emeka Felix Onwuegbuzia, Habib Mbow, Emile Niyomutabazi, Eunice Mukonde, Falalu Ibrahim Lawan, Ibrahim Said Ahmad, Jesujoba O. Alabi, Martin Namukombo, Mbonu Chinedu, Mofya Phiri, Neo Putini, Ndumiso Mngoma, Priscilla A. Amuok, Ruqayya Nasir Iro, Sonia Adhiambo
12
Python
5/21/2023 ContrastNet: A Contrastive Learning Framework for Few-Shot Text Classification
Few-shot text classification has recently been promoted by the meta-learning paradigm which aims to identify target classes with knowledge transferred from source classes with sets of small tasks named episodes. Despite their success, existing works building their meta-learner based on Prototypical Networks are unsatisfactory in learning discriminative text representations between similar classes, which may lead to contradictions during label prediction. In addition, the tasklevel and instance-level overfitting problems in few-shot text classification caused by a few training examples are not sufficiently tackled. In this work, we propose a contrastive learning framework named ContrastNet to tackle both discriminative representation and overfitting problems in few-shot text classification. ContrastNet learns to pull closer text representations belonging to the same class and push away text representations belonging to different classes, while simultaneously introducing unsupervised contrastive regularization at both task-level and instance-level to prevent overfitting. Experiments on 8 few-shot text classification datasets show that ContrastNet outperforms the current state-of-the-art models.
Junfan Chen, Richong Zhang, Yongyi Mao, Jie Xu
11
5/21/2023 CCpdf: Building a High Quality Corpus for Visually Rich Documents from Web Crawl Data
In recent years, the field of document understanding has progressed a lot. A significant part of this progress has been possible thanks to the use of language models pretrained on large amounts of documents. However, pretraining corpora used in the domain of document understanding are single domain, monolingual, or nonpublic. Our goal in this paper is to propose an efficient pipeline for creating a big-scale, diverse, multilingual corpus of PDF files from all over the Internet using Common Crawl, as PDF files are the most canonical types of documents as considered in document understanding. We analysed extensively all of the steps of the pipeline and proposed a solution which is a trade-off between data quality and processing time. We also share a CCpdf corpus in a form or an index of PDF files along with a script for downloading them, which produces a collection useful for language model pretraining. The dataset and tools published with this paper offer researchers the opportunity to develop even better multilingual language models.
Micha? Turski, Tomasz Stanis?awek, Karol Kaczmarek, Pawe? Dyda, Filip Grali?ski
10
Shell
5/21/2023 Dual-Alignment Pre-training for Cross-lingual Sentence Embedding
Recent studies have shown that dual encoder models trained with the sentence-level translation ranking task are effective methods for cross-lingual sentence embedding. However, our research indicates that token-level alignment is also crucial in multilingual scenarios, which has not been fully explored previously. Based on our findings, we propose a dual-alignment pre-training (DAP) framework for cross-lingual sentence embedding that incorporates both sentence-level and token-level alignment. To achieve this, we introduce a novel representation translation learning (RTL) task, where the model learns to use one-side contextualized token representation to reconstruct its translation counterpart. This reconstruction objective encourages the model to embed translation information into the token representation. Compared to other token-level alignment methods such as translation language modeling, RTL is more suitable for dual encoder architectures and is computationally efficient. Extensive experiments on three sentence-level cross-lingual benchmarks demonstrate that our approach can significantly improve sentence embedding. Our code is available at this https URL.
Ziheng Li, Shaohan Huang, Zihan Zhang, Zhi-Hong Deng, Qiang Lou, Haizhen Huang, Jian Jiao, Furu Wei, Weiwei Deng, Qi Zhang
10
Python