The NLP Index

Magical Software ⚡

Total repos: 8,666
time: ms
Added Title Abstract Authors Paper Graph Code
3/4/2024 Gradient-Based Language Model Red Teaming
Red teaming is a common strategy for identifying weaknesses in generative language models (LMs), where adversarial prompts are produced that trigger an LM to generate unsafe responses. Red teaming is instrumental for both model alignment and evaluation, but is labor-intensive and difficult to scale when done by humans. In this paper, we present Gradient-Based Red Teaming (GBRT), a red teaming method for automatically generating diverse prompts that are likely to cause an LM to output unsafe responses. GBRT is a form of prompt learning, trained by scoring an LM response with a safety classifier and then backpropagating through the frozen safety classifier and LM to update the prompt. To improve the coherence of input prompts, we introduce two variants that add a realism loss and fine-tune a pretrained model to generate the prompts instead of learning the prompts directly. Our experiments show that GBRT is more effective at finding prompts that trigger an LM to generate unsafe responses than a strong reinforcement learning-based red teaming approach, and succeeds even when the LM has been fine-tuned to produce safer outputs.
Nevan Wichers, Carson Denison, Ahmad Beirami
Jupyter Notebook
3/4/2024 EASYTOOL: Enhancing LLM-based Agents with Concise Tool Instruction
To address intricate real-world tasks, there has been a rising interest in tool utilization in applications of large language models (LLMs). To develop LLM-based agents, it usually requires LLMs to understand many tool functions from different tool documentation. But these documentations could be diverse, redundant or incomplete, which immensely affects the capability of LLMs in using tools. To solve this, we introduce EASYTOOL, a framework transforming diverse and lengthy tool documentation into a unified and concise tool instruction for easier tool usage. EasyTool purifies essential information from extensive tool documentation of different sources, and elaborates a unified interface (i.e., tool instruction) to offer standardized tool descriptions and functionalities for LLM-based agents. Extensive experiments on multiple different tasks demonstrate that EasyTool can significantly reduce token consumption and improve the performance of tool utilization in real-world scenarios. Our code will be available at \url{this https URL} in the future.
Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan, Yongliang Shen, Ren Kan, Dongsheng Li, Deqing Yang
3/4/2024 TinyLlama: An Open-Source Small Language Model
We present TinyLlama, a compact 1.1B language model pretrained on around 1 trillion tokens for approximately 3 epochs. Building on the architecture and tokenizer of Llama 2, TinyLlama leverages various advances contributed by the open-source community (e.g., FlashAttention), achieving better computational efficiency. Despite its relatively small size, TinyLlama demonstrates remarkable performance in a series of downstream tasks. It significantly outperforms existing open-source language models with comparable sizes. Our model checkpoints and code are publicly available on GitHub at this https URL.
Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, Wei Lu
3/4/2024 DeepSeek-Coder: When the Large Language Model Meets Programming -- The Rise of Code Intelligence
The rapid development of large language models has revolutionized code intelligence in software development. However, the predominance of closed-source models has restricted extensive research and development. To address this, we introduce the DeepSeek-Coder series, a range of open-source code models with sizes from 1.3B to 33B, trained from scratch on 2 trillion tokens. These models are pre-trained on a high-quality project-level code corpus and employ a fill-in-the-blank task with a 16K window to enhance code generation and infilling. Our extensive evaluations demonstrate that DeepSeek-Coder not only achieves state-of-the-art performance among open-source code models across multiple benchmarks but also surpasses existing closed-source models like Codex and GPT-3.5. Furthermore, DeepSeek-Coder models are under a permissive license that allows for both research and unrestricted commercial use.
Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao Bi, Y. Wu, Y.K. Li, Fuli Luo, Yingfei Xiong, Wenfeng Liang
3/4/2024 Flexibly Scaling Large Language Models Contexts Through Extensible Tokenization
Large language models (LLMs) are in need of sufficient contexts to handle many critical applications, such as retrieval augmented generation and few-shot learning. However, due to the constrained window size, the LLMs can only access to the information within a limited context. Although the size of context window can be extended by fine-tuning, it will result in a substantial cost in both training and inference stage. In this paper, we present Extensible Tokenization as an alternative method which realizes the flexible scaling of LLMs' context. Extensible Tokenization stands as a midware in between of the tokenized context and the LLM, which transforms the raw token embeddings into the extensible embeddings. Such embeddings provide a more compact representation for the long context, on top of which the LLM is able to perceive more information with the same context window. Extensible Tokenization is also featured by its flexibility: the scaling factor can be flexibly determined within a feasible scope, leading to the extension of an arbitrary context length at the inference time. Besides, Extensible Tokenization is introduced as a drop-in component, which can be seamlessly plugged into not only the LLM itself and but also its fine-tuned derivatives, bringing in the extended contextual information while fully preserving the LLM's existing capabilities. We perform comprehensive experiments on long-context language modeling and understanding tasks, which verify Extensible Tokenization as an effective, efficient, flexible, and compatible method to extend LLM's context. Our model and source code will be made publicly available.
Ninglu Shao, Shitao Xiao, Zheng Liu, Peitian Zhang
3/4/2024 OLMo: Accelerating the Science of Language Models
Language models (LMs) have become ubiquitous in both NLP research and in commercial product offerings. As their commercial importance has surged, the most powerful models have become closed off, gated behind proprietary interfaces, with important details of their training data, architectures, and development undisclosed. Given the importance of these details in scientifically studying these models, including their biases and potential risks, we believe it is essential for the research community to have access to powerful, truly open LMs. To this end, this technical report details the first release of OLMo, a state-of-the-art, truly Open Language Model and its framework to build and study the science of language modeling. Unlike most prior efforts that have only released model weights and inference code, we release OLMo and the whole framework, including training data and training and evaluation code. We hope this release will empower and strengthen the open research community and inspire a new wave of innovation.
Dirk Groeneveld, Iz Beltagy, Pete Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord, Ananya Harsh Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, Shane Arora, David Atkinson, Russell Authur, Khyathi Raghavi Chandu, Arman Cohan, Jennifer Dumas, Yanai Elazar, Yuling Gu, Jack Hessel, Tushar Khot, William Merrill, Jacob Morrison, Niklas Muennighoff, Aakanksha Naik, Crystal Nam, Matthew E. Peters, Valentina Pyatkin, Abhilasha Ravichander, Dustin Schwenk, Saurabh Shah, Will Smith, Emma Strubell, Nishant Subramani, Mitchell Wortsman, Pradeep Dasigi, Nathan Lambert, Kyle Richardson, Luke Zettlemoyer, Jesse Dodge, Kyle Lo, Luca Soldaini, Noah A. Smith, Hannaneh Hajishirzi
3/4/2024 Improving Domain Adaptation through Extended-Text Reading Comprehension
To enhance the domain-specific capabilities of large language models, continued pre-training on a domain-specific corpus is a prevalent method. Recent work demonstrates that adapting models using reading comprehension data formatted by regex-based patterns can significantly improve performance on domain-specific tasks. However, regex-based patterns are incapable of parsing raw corpora using domain-specific knowledge. Furthermore, the question and answer pairs are extracted directly from the corpus in predefined formats offers limited context. To address this limitation, we improve reading comprehension via LLM and clustering. LLM focuses on leveraging domain knowledge within the corpus to refine comprehension stage, while clustering supplies relevant knowledge by extending the context to enrich reading stage. Additionally, our method incorporates parameter-efficient fine-tuning to improve the efficiency of domain adaptation. In comparison to AdaptLLM, our method achieves an improvement exceeding 5% in domain-specific tasks. Our code will available at this https URL.
Ting Jiang, Shaohan Huang, Shengyue Luo, Zihan Zhang, Haizhen Huang, Furu Wei, Weiwei Deng, Feng Sun, Qi Zhang, Deqing Wang, Fuzhen Zhuang
3/4/2024 On the importance of Data Scale in Pretraining Arabic Language Models
Pretraining monolingual language models have been proven to be vital for performance in Arabic Natural Language Processing (NLP) tasks. In this paper, we conduct a comprehensive study on the role of data in Arabic Pretrained Language Models (PLMs). More precisely, we reassess the performance of a suite of state-of-the-art Arabic PLMs by retraining them on massive-scale, high-quality Arabic corpora. We have significantly improved the performance of the leading Arabic encoder-only BERT-base and encoder-decoder T5-base models on the ALUE and ORCA leaderboards, thereby reporting state-of-the-art results in their respective model categories. In addition, our analysis strongly suggests that pretraining data by far is the primary contributor to performance, surpassing other factors. Our models and source code are publicly available at this https URL.
Abbas Ghaddar, Philippe Langlais, Mehdi Rezagholizadeh, Boxing Chen
3/4/2024 Code Generation with AlphaCodium: From Prompt Engineering to Flow Engineering
Code generation problems differ from common natural language problems - they require matching the exact syntax of the target language, identifying happy paths and edge cases, paying attention to numerous small details in the problem spec, and addressing other code-specific issues and requirements. Hence, many of the optimizations and tricks that have been successful in natural language generation may not be effective for code tasks. In this work, we propose a new approach to code generation by LLMs, which we call AlphaCodium - a test-based, multi-stage, code-oriented iterative flow, that improves the performances of LLMs on code problems. We tested AlphaCodium on a challenging code generation dataset called CodeContests, which includes competitive programming problems from platforms such as Codeforces. The proposed flow consistently and significantly improves results. On the validation set, for example, GPT-4 accuracy (pass@5) increased from 19% with a single well-designed direct prompt to 44% with the AlphaCodium flow. Many of the principles and best practices acquired in this work, we believe, are broadly applicable to general code generation tasks. Full implementation is available at: this https URL
Tal Ridnik, Dedy Kredo, Itamar Friedman
3/4/2024 UFO: A UI-Focused Agent for Windows OS Interaction
We introduce UFO, an innovative UI-Focused agent to fulfill user requests tailored to applications on Windows OS, harnessing the capabilities of GPT-Vision. UFO employs a dual-agent framework to meticulously observe and analyze the graphical user interface (GUI) and control information of Windows applications. This enables the agent to seamlessly navigate and operate within individual applications and across them to fulfill user requests, even when spanning multiple applications. The framework incorporates a control interaction module, facilitating action grounding without human intervention and enabling fully automated execution. Consequently, UFO transforms arduous and time-consuming processes into simple tasks achievable solely through natural language commands. We conducted testing of UFO across 9 popular Windows applications, encompassing a variety of scenarios reflective of users' daily usage. The results, derived from both quantitative metrics and real-case studies, underscore the superior effectiveness of UFO in fulfilling user requests. To the best of our knowledge, UFO stands as the first UI agent specifically tailored for task completion within the Windows OS environment. The open-source code for UFO is available on this https URL.
Chaoyun Zhang, Liqun Li, Shilin He, Xu Zhang, Bo Qiao, Si Qin, Minghua Ma, Yu Kang, Qingwei Lin, Saravan Rajmohan, Dongmei Zhang, Qi Zhang
3/4/2024 VisualWebArena: Evaluating Multimodal Agents on Realistic Visual Web Tasks
Autonomous agents capable of planning, reasoning, and executing actions on the web offer a promising avenue for automating computer tasks. However, the majority of existing benchmarks primarily focus on text-based agents, neglecting many natural tasks that require visual information to effectively solve. Given that most computer interfaces cater to human perception, visual information often augments textual data in ways that text-only models struggle to harness effectively. To bridge this gap, we introduce VisualWebArena, a benchmark designed to assess the performance of multimodal web agents on realistic \textit{visually grounded tasks}. VisualWebArena comprises of a set of diverse and complex web-based tasks that evaluate various capabilities of autonomous multimodal agents. To perform on this benchmark, agents need to accurately process image-text inputs, interpret natural language instructions, and execute actions on websites to accomplish user-defined objectives. We conduct an extensive evaluation of state-of-the-art LLM-based autonomous agents, including several multimodal models. Through extensive quantitative and qualitative analysis, we identify several limitations of text-only LLM agents, and reveal gaps in the capabilities of state-of-the-art multimodal language agents. VisualWebArena provides a framework for evaluating multimodal autonomous language agents, and offers insights towards building stronger autonomous agents for the web. Our code, baseline models, and data is publicly available at this https URL.
Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham Neubig, Shuyan Zhou, Ruslan Salakhutdinov, Daniel Fried
3/4/2024 Medusa: Simple LLM Inference Acceleration Framework with Multiple Decoding Heads
The inference process in Large Language Models (LLMs) is often limited due to the absence of parallelism in the auto-regressive decoding process, resulting in most operations being restricted by the memory bandwidth of accelerators. While methods such as speculative decoding have been suggested to address this issue, their implementation is impeded by the challenges associated with acquiring and maintaining a separate draft model. In this paper, we present Medusa, an efficient method that augments LLM inference by adding extra decoding heads to predict multiple subsequent tokens in parallel. Using a tree-based attention mechanism, Medusa constructs multiple candidate continuations and verifies them simultaneously in each decoding step. By leveraging parallel processing, Medusa introduces only minimal overhead in terms of single-step latency while substantially reducing the number of decoding steps required. We present two levels of fine-tuning procedures for Medusa to meet the needs of different use cases: Medusa-1: Medusa is directly fine-tuned on top of a frozen backbone LLM, enabling lossless inference acceleration. Medusa-2: Medusa is fine-tuned together with the backbone LLM, enabling better prediction accuracy of Medusa heads and higher speedup but needing a special training recipe that preserves the backbone model's capabilities. Moreover, we propose several extensions that improve or expand the utility of Medusa, including a self-distillation to handle situations where no training data is available and a typical acceptance scheme to boost the acceptance rate while maintaining generation quality. We evaluate Medusa on models of various sizes and training procedures. Our experiments demonstrate that Medusa-1 can achieve over 2.2x speedup without compromising generation quality, while Medusa-2 further improves the speedup to 2.3-3.6x.
Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, Tri Dao
Jupyter Notebook
3/4/2024 Mobile-Agent: Autonomous Multi-Modal Mobile Device Agent with Visual Perception
Mobile device agent based on Multimodal Large Language Models (MLLM) is becoming a popular application. In this paper, we introduce Mobile-Agent, an autonomous multi-modal mobile device agent. Mobile-Agent first leverages visual perception tools to accurately identify and locate both the visual and textual elements within the app's front-end interface. Based on the perceived vision context, it then autonomously plans and decomposes the complex operation task, and navigates the mobile Apps through operations step by step. Different from previous solutions that rely on XML files of Apps or mobile system metadata, Mobile-Agent allows for greater adaptability across diverse mobile operating environments in a vision-centric way, thereby eliminating the necessity for system-specific customizations. To assess the performance of Mobile-Agent, we introduced Mobile-Eval, a benchmark for evaluating mobile device operations. Based on Mobile-Eval, we conducted a comprehensive evaluation of Mobile-Agent. The experimental results indicate that Mobile-Agent achieved remarkable accuracy and completion rates. Even with challenging instructions, such as multi-app operations, Mobile-Agent can still complete the requirements. Code and model will be open-sourced at this https URL.
Junyang Wang, Haiyang Xu, Jiabo Ye, Ming Yan, Weizhou Shen, Ji Zhang, Fei Huang, Jitao Sang
3/4/2024 InternLM-XComposer2: Mastering Free-form Text-Image Composition and Comprehension in Vision-Language Large Model
We introduce InternLM-XComposer2, a cutting-edge vision-language model excelling in free-form text-image composition and comprehension. This model goes beyond conventional vision-language understanding, adeptly crafting interleaved text-image content from diverse inputs like outlines, detailed textual specifications, and reference images, enabling highly customizable content creation. InternLM-XComposer2 proposes a Partial LoRA (PLoRA) approach that applies additional LoRA parameters exclusively to image tokens to preserve the integrity of pre-trained language knowledge, striking a balance between precise vision understanding and text composition with literary talent. Experimental results demonstrate the superiority of InternLM-XComposer2 based on InternLM2-7B in producing high-quality long-text multi-modal content and its exceptional vision-language understanding performance across various benchmarks, where it not only significantly outperforms existing multimodal models but also matches or even surpasses GPT-4V and Gemini Pro in certain assessments. This highlights its remarkable proficiency in the realm of multimodal understanding. The InternLM-XComposer2 model series with 7B parameters are publicly available at this https URL.
Xiaoyi Dong, Pan Zhang, Yuhang Zang, Yuhang Cao, Bin Wang, Linke Ouyang, Xilin Wei, Songyang Zhang, Haodong Duan, Maosong Cao, Wenwei Zhang, Yining Li, Hang Yan, Yang Gao, Xinyue Zhang, Wei Li, Jingwen Li, Kai Chen, Conghui He, Xingcheng Zhang, Yu Qiao, Dahua Lin, Jiaqi Wang
3/4/2024 Unifying Structured Data as Graph for Data-to-Text Pre-Training
Data-to-text (D2T) generation aims to transform structured data into natural language text. Data-to-text pre-training has proved to be powerful in enhancing D2T generation and yields impressive performances. However, previous pre-training methods either oversimplified structured data into a sequence without considering input structures or designed training objectives tailored for a specific data structure (e.g., table or knowledge graph). In this paper, we unify different types of structured data (i.e., table, key-value data, knowledge graph) into the graph format and cast different data-to-text generation tasks as graph-to-text generation. To effectively exploit the structural information of the input graph, we propose a structure-enhanced pre-training method for D2T generation by designing a structure-enhanced Transformer. Concretely, we devise a position matrix for the Transformer, encoding relative positional information of connected nodes in the input graph. In addition, we propose a new attention matrix to incorporate graph structures into the original Transformer by taking the available explicit connectivity structure into account. Extensive experiments on six benchmark datasets show the effectiveness of our model. Our source codes are available at this https URL.
Shujie Li, Liang Li, Ruiying Geng, Min Yang, Binhua Li, Guanghu Yuan, Wanwei He, Shao Yuan, Can Ma, Fei Huang, Yongbin Li
3/4/2024 SpeechGPT-Gen: Scaling Chain-of-Information Speech Generation
Benefiting from effective speech modeling, current Speech Large Language Models (SLLMs) have demonstrated exceptional capabilities in in-context speech generation and efficient generalization to unseen speakers. However, the prevailing information modeling process is encumbered by certain redundancies, leading to inefficiencies in speech generation. We propose Chain-of-Information Generation (CoIG), a method for decoupling semantic and perceptual information in large-scale speech generation. Building on this, we develop SpeechGPT-Gen, an 8-billion-parameter SLLM efficient in semantic and perceptual information modeling. It comprises an autoregressive model based on LLM for semantic information modeling and a non-autoregressive model employing flow matching for perceptual information modeling. Additionally, we introduce the novel approach of infusing semantic information into the prior distribution to enhance the efficiency of flow matching. Extensive experimental results demonstrate that SpeechGPT-Gen markedly excels in zero-shot text-to-speech, zero-shot voice conversion, and speech-to-speech dialogue, underscoring CoIG's remarkable proficiency in capturing and modeling speech's semantic and perceptual dimensions. Code and models are available at this https URL.
Dong Zhang, Xin Zhang, Jun Zhan, Shimin Li, Yaqian Zhou, Xipeng Qiu
3/4/2024 DeepSeekMoE: Towards Ultimate Expert Specialization in Mixture-of-Experts Language Models
In the era of large language models, Mixture-of-Experts (MoE) is a promising architecture for managing computational costs when scaling up model parameters. However, conventional MoE architectures like GShard, which activate the top-$K$ out of $N$ experts, face challenges in ensuring expert specialization, i.e. each expert acquires non-overlapping and focused knowledge. In response, we propose the DeepSeekMoE architecture towards ultimate expert specialization. It involves two principal strategies: (1) finely segmenting the experts into $mN$ ones and activating $mK$ from them, allowing for a more flexible combination of activated experts; (2) isolating $K_s$ experts as shared ones, aiming at capturing common knowledge and mitigating redundancy in routed experts. Starting from a modest scale with 2B parameters, we demonstrate that DeepSeekMoE 2B achieves comparable performance with GShard 2.9B, which has 1.5 times the expert parameters and computation. In addition, DeepSeekMoE 2B nearly approaches the performance of its dense counterpart with the same number of total parameters, which set the upper bound of MoE models. Subsequently, we scale up DeepSeekMoE to 16B parameters and show that it achieves comparable performance with LLaMA2 7B, with only about 40% of computations. Further, our preliminary efforts to scale up DeepSeekMoE to 145B parameters consistently validate its substantial advantages over the GShard architecture, and show its performance comparable with DeepSeek 67B, using only 28.5% (maybe even 18.2%) of computations.
Damai Dai, Chengqi Deng, Chenggang Zhao, R.X. Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding Zeng, Xingkai Yu, Y. Wu, Zhenda Xie, Y.K. Li, Panpan Huang, Fuli Luo, Chong Ruan, Zhifang Sui, Wenfeng Liang
3/4/2024 Orion-14B: Open-source Multilingual Large Language Models
In this study, we introduce Orion-14B, a collection of multilingual large language models with 14 billion parameters. We utilize a data scheduling approach to train a foundational model on a diverse corpus of 2.5 trillion tokens, sourced from texts in English, Chinese, Japanese, Korean, and other languages. Additionally, we fine-tuned a series of models tailored for conversational applications and other specific use cases. Our evaluation results demonstrate that Orion-14B achieves state-of-the-art performance across a broad spectrum of tasks. We make the Orion-14B model family and its associated code publicly accessible this https URL, aiming to inspire future research and practical applications in the field.
Du Chen, Yi Huang, Xiaopu Li, Yongqiang Li, Yongqiang Liu, Haihui Pan, Leichao Xu, Dacheng Zhang, Zhipeng Zhang, Kun Han
3/4/2024 Dolma: an Open Corpus of Three Trillion Tokens for Language Model Pretraining Research
Language models have become a critical technology to tackling a wide range of natural language processing tasks, yet many details about how the best-performing language models were developed are not reported. In particular, information about their pretraining corpora is seldom discussed: commercial language models rarely provide any information about their data; even open models rarely release datasets they are trained on, or an exact recipe to reproduce them. As a result, it is challenging to conduct certain threads of language modeling research, such as understanding how training data impacts model capabilities and shapes their limitations. To facilitate open research on language model pretraining, we release Dolma, a three trillion tokens English corpus, built from a diverse mixture of web content, scientific papers, code, public-domain books, social media, and encyclopedic materials. In addition, we open source our data curation toolkit to enable further experimentation and reproduction of our work. In this report, we document Dolma, including its design principles, details about its construction, and a summary of its contents. We interleave this report with analyses and experimental results from training language models on intermediate states of Dolma to share what we have learned about important data curation practices, including the role of content or quality filters, deduplication, and multi-source mixing. Dolma has been used to train OLMo, a state-of-the-art, open language model and framework designed to build and study the science of language modeling.
Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin Schwenk, David Atkinson, Russell Authur, Ben Bogin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar, Valentin Hofmann, Ananya Harsh Jha, Sachin Kumar, Li Lucy, Xinxi Lyu, Nathan Lambert, Ian Magnusson, Jacob Morrison, Niklas Muennighoff, Aakanksha Naik, Crystal Nam, Matthew E. Peters, Abhilasha Ravichander, Kyle Richardson, Zejiang Shen, Emma Strubell, Nishant Subramani, Oyvind Tafjord, Pete Walsh, Luke Zettlemoyer, Noah A. Smith, Hannaneh Hajishirzi, Iz Beltagy, Dirk Groeneveld, Jesse Dodge, Kyle Lo
3/4/2024 DataDreamer: A Tool for Synthetic Data Generation and Reproducible LLM Workflows
Large language models (LLMs) have become a dominant and important tool for NLP researchers in a wide range of tasks. Today, many researchers use LLMs in synthetic data generation, task evaluation, fine-tuning, distillation, and other model-in-the-loop research workflows. However, challenges arise when using these models that stem from their scale, their closed source nature, and the lack of standardized tooling for these new and emerging workflows. The rapid rise to prominence of these models and these unique challenges has had immediate adverse impacts on open science and on the reproducibility of work that uses them. In this paper, we introduce DataDreamer, an open source Python library that allows researchers to write simple code to implement powerful LLM workflows. DataDreamer also helps researchers adhere to best practices that we propose to encourage open science and reproducibility. The library and documentation are available at this https URL .
Ajay Patel, Colin Raffel, Chris Callison-Burch
3/4/2024 HuixiangDou: Overcoming Group Chat Scenarios with LLM-based Technical Assistance
In this work, we present HuixiangDou, a technical assistant powered by Large Language Models (LLM). This system is designed to assist algorithm developers by providing insightful responses to questions related to open-source algorithm projects, such as computer vision and deep learning projects from OpenMMLab. We further explore the integration of this assistant into the group chats of instant messaging (IM) tools such as WeChat and Lark. Through several iterative improvements and trials, we have developed a sophisticated technical chat assistant capable of effectively answering users' technical questions without causing message flooding. This paper's contributions include: 1) Designing an algorithm pipeline specifically for group chat scenarios; 2) Verifying the reliable performance of text2vec in task rejection; 3) Identifying three critical requirements for LLMs in technical-assistant-like products, namely scoring ability, In-Context Learning (ICL), and Long Context. We have made the software and source code available at this https URL to aid in future research and application. HuixiangDou is applicable to any group chat within IM tools.
Huanjun Kong, Songyang Zhang, Kai Chen
3/4/2024 A Comprehensive Study of Knowledge Editing for Large Language Models
Large Language Models (LLMs) have shown extraordinary capabilities in understanding and generating text that closely mirrors human communication. However, a primary limitation lies in the significant computational demands during training, arising from their extensive parameterization. This challenge is further intensified by the dynamic nature of the world, necessitating frequent updates to LLMs to correct outdated information or integrate new knowledge, thereby ensuring their continued relevance. Note that many applications demand continual model adjustments post-training to address deficiencies or undesirable behaviors. There is an increasing interest in efficient, lightweight methods for on-the-fly model modifications. To this end, recent years have seen a burgeoning in the techniques of knowledge editing for LLMs, which aim to efficiently modify LLMs' behaviors within specific domains while preserving overall performance across various inputs. In this paper, we first define the knowledge editing problem and then provide a comprehensive review of cutting-edge approaches. Drawing inspiration from educational and cognitive research theories, we propose a unified categorization criterion that classifies knowledge editing methods into three groups: resorting to external knowledge, merging knowledge into the model, and editing intrinsic knowledge. Furthermore, we introduce a new benchmark, KnowEdit, for a comprehensive empirical evaluation of representative knowledge editing approaches. Additionally, we provide an in-depth analysis of knowledge location, which can provide a deeper understanding of the knowledge structures inherent within LLMs. Finally, we discuss several potential applications of knowledge editing, outlining its broad and impactful implications.
Ningyu Zhang, Yunzhi Yao, Bozhong Tian, Peng Wang, Shumin Deng, Mengru Wang, Zekun Xi, Shengyu Mao, Jintian Zhang, Yuansheng Ni, Siyuan Cheng, Ziwen Xu, Xin Xu, Jia-Chen Gu, Yong Jiang, Pengjun Xie, Fei Huang, Lei Liang, Zhiqiang Zhang, Xiaowei Zhu, Jun Zhou, Huajun Chen
3/4/2024 GPT-4V(ision) is a Generalist Web Agent, if Grounded
The recent development on large multimodal models (LMMs), especially GPT-4V(ision) and Gemini, has been quickly expanding the capability boundaries of multimodal models beyond traditional tasks like image captioning and visual question answering. In this work, we explore the potential of LMMs like GPT-4V as a generalist web agent that can follow natural language instructions to complete tasks on any given website. We propose SEEACT, a generalist web agent that harnesses the power of LMMs for integrated visual understanding and acting on the web. We evaluate on the recent MIND2WEB benchmark. In addition to standard offline evaluation on cached websites, we enable a new online evaluation setting by developing a tool that allows running web agents on live websites. We show that GPT-4V presents a great potential for web agents - it can successfully complete 50% of the tasks on live websites if we manually ground its textual plans into actions on the websites. This substantially outperforms text-only LLMs like GPT-4 or smaller models (FLAN-T5 and BLIP-2) specifically fine-tuned for web agents. However, grounding still remains a major challenge. Existing LMM grounding strategies like set-of-mark prompting turns out not effective for web agents, and the best grounding strategy we develop in this paper leverages both the HTML text and visuals. Yet, there is still a substantial gap with oracle grounding, leaving ample room for further improvement.
Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, Yu Su
3/4/2024 MosaicBERT: A Bidirectional Encoder Optimized for Fast Pretraining
Although BERT-style encoder models are heavily used in NLP research, many researchers do not pretrain their own BERTs from scratch due to the high cost of training. In the past half-decade since BERT first rose to prominence, many advances have been made with other transformer architectures and training configurations that have yet to be systematically incorporated into BERT. Here, we introduce MosaicBERT, a BERT-style encoder architecture and training recipe that is empirically optimized for fast pretraining. This efficient architecture incorporates FlashAttention, Attention with Linear Biases (ALiBi), Gated Linear Units (GLU), a module to dynamically remove padded tokens, and low precision LayerNorm into the classic transformer encoder block. The training recipe includes a 30% masking ratio for the Masked Language Modeling (MLM) objective, bfloat16 precision, and vocabulary size optimized for GPU throughput, in addition to best-practices from RoBERTa and other encoder models. When pretrained from scratch on the C4 dataset, this base model achieves a downstream average GLUE (dev) score of 79.6 in 1.13 hours on 8 A100 80 GB GPUs at a cost of roughly $20. We plot extensive accuracy vs. pretraining speed Pareto curves and show that MosaicBERT base and large are consistently Pareto optimal when compared to a competitive BERT base and large. This empirical speed up in pretraining enables researchers and engineers to pretrain custom BERT-style models at low cost instead of finetune on existing generic models. We open source our model weights and code.
Jacob Portes, Alex Trott, Sam Havens, Daniel King, Abhinav Venigalla, Moin Nadeem, Nikhil Sardana, Daya Khudia, Jonathan Frankle
3/4/2024 EAGLE: Speculative Sampling Requires Rethinking Feature Uncertainty
Auto-regressive decoding makes the inference of Large Language Models (LLMs) time-consuming. We propose a simple framework, EAGLE (Extrapolation Algorithm for Greater Language-model Efficiency), for lossless acceleration. Unlike traditional speculative sampling methods, EAGLE operates the drafting process auto-regressively at the more regular (second-top-layer) feature level and addresses the sampling uncertainty issues in the next-feature prediction problems by integrating tokens from one time step ahead. The acceleration provided by EAGLE is lossless: it involves no fine-tuning of the target LLM, and the generated text maintains the same distribution as that of vanilla auto-regressive decoding. As of the submission of this paper, EAGLE is the fastest known framework within the speculative sampling family. On MT-bench, EAGLE is 3x faster than vanilla decoding, 2x faster than Lookahead, and 1.6x faster than Medusa. Using gpt-fast, EAGLE attains on average 160 tokens/s with LLaMA2-Chat 13B on a single RTX 3090 GPU, compared to 24 tokens/s of Huggingface's implementations.
Yuhui Li, Fangyun Wei, Chao Zhang, Hongyang Zhang
3/4/2024 Video Understanding with Large Language Models: A Survey
With the burgeoning growth of online video platforms and the escalating volume of video content, the demand for proficient video understanding tools has intensified markedly. Given the remarkable capabilities of Large Language Models (LLMs) in language and multimodal tasks, this survey provides a detailed overview of the recent advancements in video understanding harnessing the power of LLMs (Vid-LLMs). The emergent capabilities of Vid-LLMs are surprisingly advanced, particularly their ability for open-ended spatial-temporal reasoning combined with commonsense knowledge, suggesting a promising path for future video understanding. We examine the unique characteristics and capabilities of Vid-LLMs, categorizing the approaches into four main types: LLM-based Video Agents, Vid-LLMs Pretraining, Vid-LLMs Instruction Tuning, and Hybrid Methods. Furthermore, this survey presents a comprehensive study of the tasks, datasets, and evaluation methodologies for Vid-LLMs. Additionally, it explores the expansive applications of Vid-LLMs across various domains, highlighting their remarkable scalability and versatility in real-world video understanding challenges. Finally, it summarizes the limitations of existing Vid-LLMs and outlines directions for future research. For more information, readers are recommended to visit the repository at this https URL.
Yunlong Tang, Jing Bi, Siting Xu, Luchuan Song, Susan Liang, Teng Wang, Daoan Zhang, Jie An, Jingyang Lin, Rongyi Zhu, Ali Vosoughi, Chao Huang, Zeliang Zhang, Feng Zheng, Jianguo Zhang, Ping Luo, Jiebo Luo, Chenliang Xu
3/4/2024 The FinBen: An Holistic Financial Benchmark for Large Language Models
LLMs have transformed NLP and shown promise in various fields, yet their potential in finance is underexplored due to a lack of thorough evaluations and the complexity of financial tasks. This along with the rapid development of LLMs, highlights the urgent need for a systematic financial evaluation benchmark for LLMs. In this paper, we introduce FinBen, the first comprehensive open-sourced evaluation benchmark, specifically designed to thoroughly assess the capabilities of LLMs in the financial domain. FinBen encompasses 35 datasets across 23 financial tasks, organized into three spectrums of difficulty inspired by the Cattell-Horn-Carroll theory, to evaluate LLMs' cognitive abilities in inductive reasoning, associative memory, quantitative reasoning, crystallized intelligence, and more. Our evaluation of 15 representative LLMs, including GPT-4, ChatGPT, and the latest Gemini, reveals insights into their strengths and limitations within the financial domain. The findings indicate that GPT-4 leads in quantification, extraction, numerical reasoning, and stock trading, while Gemini shines in generation and forecasting; however, both struggle with complex extraction and forecasting, showing a clear need for targeted enhancements. Instruction tuning boosts simple task performance but falls short in improving complex reasoning and forecasting abilities. FinBen seeks to continuously evaluate LLMs in finance, fostering AI development with regular updates of tasks and models.
Qianqian Xie, Weiguang Han, Zhengyu Chen, Ruoyu Xiang, Xiao Zhang, Yueru He, Mengxi Xiao, Dong Li, Yongfu Dai, Duanyu Feng, Yijing Xu, Haoqiang Kang, Ziyan Kuang, Chenhan Yuan, Kailai Yang, Zheheng Luo, Tianlin Zhang, Zhiwei Liu, Guojun Xiong, Zhiyang Deng, Yuechen Jiang, Zhiyuan Yao, Haohang Li, Yangyang Yu, Gang Hu, Jiajia Huang, Xiao-Yang Liu, Alejandro Lopez-Lira, Benyou Wang, Yanzhao Lai, Hao Wang, Min Peng, Sophia Ananiadou, Jimin Huang
3/4/2024 LLaMA Pro: Progressive LLaMA with Block Expansion
Humans generally acquire new skills without compromising the old; however, the opposite holds for Large Language Models (LLMs), e.g., from LLaMA to CodeLLaMA. To this end, we propose a new post-pretraining method for LLMs with an expansion of Transformer blocks. We tune the expanded blocks using only new corpus, efficiently and effectively improving the model's knowledge without catastrophic forgetting. In this paper, we experiment on the corpus of code and math, yielding LLaMA Pro-8.3B, a versatile foundation model initialized from LLaMA2-7B, excelling in general tasks, programming, and mathematics. LLaMA Pro and its instruction-following counterpart (LLaMA Pro-Instruct) achieve advanced performance among various benchmarks, demonstrating superiority over existing open models in the LLaMA family and the immense potential of reasoning and addressing diverse tasks as an intelligent agent. Our findings provide valuable insights into integrating natural and programming languages, laying a solid foundation for developing advanced language agents that operate effectively in various environments.
Chengyue Wu, Yukang Gan, Yixiao Ge, Zeyu Lu, Jiahao Wang, Ye Feng, Ping Luo, Ying Shan
3/4/2024 Extreme Compression of Large Language Models via Additive Quantization
The emergence of accurate open large language models (LLMs) has led to a race towards quantization techniques for such models enabling execution on end-user devices. In this paper, we revisit the problem of "extreme" LLM compression--defined as targeting extremely low bit counts, such as 2 to 3 bits per parameter, from the point of view of classic methods in Multi-Codebook Quantization (MCQ). Our work builds on top of Additive Quantization, a classic algorithm from the MCQ family, and adapts it to the quantization of language models. The resulting algorithm advances the state-of-the-art in LLM compression, outperforming all recently-proposed techniques in terms of accuracy at a given compression budget. For instance, when compressing Llama 2 models to 2 bits per parameter, our algorithm quantizes the 7B model to 6.93 perplexity (a 1.29 improvement relative to the best prior work, and 1.81 points from FP16), the 13B model to 5.70 perplexity (a .36 improvement) and the 70B model to 3.94 perplexity (a .22 improvement) on WikiText2. We release our implementation of Additive Quantization for Language Models AQLM as a baseline to facilitate future research in LLM quantization.
Vage Egiazarian, Andrei Panferov, Denis Kuznedelev, Elias Frantar, Artem Babenko, Dan Alistarh
3/4/2024 Large Language Models for Generative Information Extraction: A Survey
Information extraction (IE) aims to extract structural knowledge (such as entities, relations, and events) from plain natural language texts. Recently, generative Large Language Models (LLMs) have demonstrated remarkable capabilities in text understanding and generation, allowing for generalization across various domains and tasks. As a result, numerous works have been proposed to harness abilities of LLMs and offer viable solutions for IE tasks based on a generative paradigm. To conduct a comprehensive systematic review and exploration of LLM efforts for IE tasks, in this study, we survey the most recent advancements in this field. We first present an extensive overview by categorizing these works in terms of various IE subtasks and learning paradigms, then we empirically analyze the most advanced methods and discover the emerging trend of IE tasks with LLMs. Based on thorough review conducted, we identify several insights in technique and promising research directions that deserve further exploration in future studies. We maintain a public repository and consistently update related resources at: \url{this https URL}.
Derong Xu, Wei Chen, Wenjun Peng, Chao Zhang, Tong Xu, Xiangyu Zhao, Xian Wu, Yefeng Zheng, Enhong Chen
3/4/2024 Generative Representational Instruction Tuning
All text-based language problems can be reduced to either generation or embedding. Current models only perform well at one or the other. We introduce generative representational instruction tuning (GRIT) whereby a large language model is trained to handle both generative and embedding tasks by distinguishing between them through instructions. Compared to other open models, our resulting GritLM 7B sets a new state of the art on the Massive Text Embedding Benchmark (MTEB) and outperforms all models up to its size on a range of generative tasks. By scaling up further, GritLM 8x7B outperforms all open generative language models that we tried while still being among the best embedding models. Notably, we find that GRIT matches training on only generative or embedding data, thus we can unify both at no performance loss. Among other benefits, the unification via GRIT speeds up Retrieval-Augmented Generation (RAG) by > 60% for long documents, by no longer requiring separate retrieval and generation models. Models, code, etc. are freely available at this https URL.
Niklas Muennighoff, Hongjin Su, Liang Wang, Nan Yang, Furu Wei, Tao Yu, Amanpreet Singh, Douwe Kiela
Jupyter Notebook
3/4/2024 SliceGPT: Compress Large Language Models by Deleting Rows and Columns
Large language models have become the cornerstone of natural language processing, but their use comes with substantial costs in terms of compute and memory resources. Sparsification provides a solution to alleviate these resource constraints, and recent works have shown that trained models can be sparsified post-hoc. Existing sparsification techniques face challenges as they need additional data structures and offer constrained speedup with current hardware. In this paper we present SliceGPT, a new post-training sparsification scheme which replaces each weight matrix with a smaller (dense) matrix, reducing the embedding dimension of the network. Through extensive experimentation, we show that SliceGPT can remove up to 25% of the model parameters (including embeddings) for LLAMA2-70B, OPT 66B and Phi-2 models while maintaining 99%, 99% and 90% zero-shot task performance of the dense model respectively. Our sliced models run on fewer GPUs and run faster without any additional code optimization: on 24GB consumer GPUs we reduce the total compute for inference on LLAMA2-70B to 64% of that of the dense model; on 40GB A100 GPUs we reduce it to 66%. We offer a new insight, computational invariance in transformer networks, which enables SliceGPT and we hope it will inspire and enable future avenues to reduce memory and computation demands for pre-trained models. Code is available at: this https URL
Saleh Ashkboos, Maximilian L. Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, James Hensman
3/4/2024 Contrastive Preference Optimization: Pushing the Boundaries of LLM Performance in Machine Translation
Moderate-sized large language models (LLMs) -- those with 7B or 13B parameters -- exhibit promising machine translation (MT) performance. However, even the top-performing 13B LLM-based translation models, like ALMA, does not match the performance of state-of-the-art conventional encoder-decoder translation models or larger-scale LLMs such as GPT-4. In this study, we bridge this performance gap. We first assess the shortcomings of supervised fine-tuning for LLMs in the MT task, emphasizing the quality issues present in the reference data, despite being human-generated. Then, in contrast to SFT which mimics reference translations, we introduce Contrastive Preference Optimization (CPO), a novel approach that trains models to avoid generating adequate but not perfect translations. Applying CPO to ALMA models with only 22K parallel sentences and 12M parameters yields significant improvements. The resulting model, called ALMA-R, can match or exceed the performance of the WMT competition winners and GPT-4 on WMT'21, WMT'22 and WMT'23 test datasets.
Haoran Xu, Amr Sharaf, Yunmo Chen, Weiting Tan, Lingfeng Shen, Benjamin Van Durme, Kenton Murray, Young Jin Kim
3/4/2024 Knowledge Fusion of Large Language Models
While training large language models (LLMs) from scratch can generate models with distinct functionalities and strengths, it comes at significant costs and may result in redundant capabilities. Alternatively, a cost-effective and compelling approach is to merge existing pre-trained LLMs into a more potent model. However, due to the varying architectures of these LLMs, directly blending their weights is impractical. In this paper, we introduce the notion of knowledge fusion for LLMs, aimed at combining the capabilities of existing LLMs and transferring them into a single LLM. By leveraging the generative distributions of source LLMs, we externalize their collective knowledge and unique strengths, thereby potentially elevating the capabilities of the target model beyond those of any individual source LLM. We validate our approach using three popular LLMs with different architectures--Llama-2, MPT, and OpenLLaMA--across various benchmarks and tasks. Our findings confirm that the fusion of LLMs can improve the performance of the target model across a range of capabilities such as reasoning, commonsense, and code generation. Our code, model weights, and data are public at \url{this https URL}.
Fanqi Wan, Xinting Huang, Deng Cai, Xiaojun Quan, Wei Bi, Shuming Shi
3/4/2024 LLaVA-$?$: Efficient Multi-Modal Assistant with Small Language Model
In this paper, we introduce LLaVA-$\phi$ (LLaVA-Phi), an efficient multi-modal assistant that harnesses the power of the recently advanced small language model, Phi-2, to facilitate multi-modal dialogues. LLaVA-Phi marks a notable advancement in the realm of compact multi-modal models. It demonstrates that even smaller language models, with as few as 2.7B parameters, can effectively engage in intricate dialogues that integrate both textual and visual elements, provided they are trained with high-quality corpora. Our model delivers commendable performance on publicly available benchmarks that encompass visual comprehension, reasoning, and knowledge-based perception. Beyond its remarkable performance in multi-modal dialogue tasks, our model opens new avenues for applications in time-sensitive environments and systems that require real-time interaction, such as embodied agents. It highlights the potential of smaller language models to achieve sophisticated levels of understanding and interaction, while maintaining greater resource efficiency.The project is available at {this https URL}.
Yichen Zhu, Minjie Zhu, Ning Liu, Zhicai Ou, Xiaofeng Mou, Jian Tang
3/4/2024 Data Engineering for Scaling Language Models to 128K Context
We study the continual pretraining recipe for scaling language models' context lengths to 128K, with a focus on data engineering. We hypothesize that long context modeling, in particular \textit{the ability to utilize information at arbitrary input locations}, is a capability that is mostly already acquired through large-scale pretraining, and that this capability can be readily extended to contexts substantially longer than seen during training~(e.g., 4K to 128K) through lightweight continual pretraining on appropriate data mixture. We investigate the \textit{quantity} and \textit{quality} of the data for continual pretraining: (1) for quantity, we show that 500 million to 5 billion tokens are enough to enable the model to retrieve information anywhere within the 128K context; (2) for quality, our results equally emphasize \textit{domain balance} and \textit{length upsampling}. Concretely, we find that naively upsampling longer data on certain domains like books, a common practice of existing work, gives suboptimal performance, and that a balanced domain mixture is important. We demonstrate that continual pretraining of the full model on 1B-5B tokens of such data is an effective and affordable strategy for scaling the context length of language models to 128K. Our recipe outperforms strong open-source long-context models and closes the gap to frontier models like GPT-4 128K.
Yao Fu, Rameswar Panda, Xinyao Niu, Xiang Yue, Hannaneh Hajishirzi, Yoon Kim, Hao Peng
3/4/2024 TrustLLM: Trustworthiness in Large Language Models
Large language models (LLMs), exemplified by ChatGPT, have gained considerable attention for their excellent natural language processing capabilities. Nonetheless, these LLMs present many challenges, particularly in the realm of trustworthiness. Therefore, ensuring the trustworthiness of LLMs emerges as an important topic. This paper introduces TrustLLM, a comprehensive study of trustworthiness in LLMs, including principles for different dimensions of trustworthiness, established benchmark, evaluation, and analysis of trustworthiness for mainstream LLMs, and discussion of open challenges and future directions. Specifically, we first propose a set of principles for trustworthy LLMs that span eight different dimensions. Based on these principles, we further establish a benchmark across six dimensions including truthfulness, safety, fairness, robustness, privacy, and machine ethics. We then present a study evaluating 16 mainstream LLMs in TrustLLM, consisting of over 30 datasets. Our findings firstly show that in general trustworthiness and utility (i.e., functional effectiveness) are positively related. Secondly, our observations reveal that proprietary LLMs generally outperform most open-source counterparts in terms of trustworthiness, raising concerns about the potential risks of widely accessible open-source LLMs. However, a few open-source LLMs come very close to proprietary ones. Thirdly, it is important to note that some LLMs may be overly calibrated towards exhibiting trustworthiness, to the extent that they compromise their utility by mistakenly treating benign prompts as harmful and consequently not responding. Finally, we emphasize the importance of ensuring transparency not only in the models themselves but also in the technologies that underpin trustworthiness. Knowing the specific trustworthy technologies that have been employed is crucial for analyzing their effectiveness.
Lichao Sun, Yue Huang, Haoran Wang, Siyuan Wu, Qihui Zhang, Chujie Gao, Yixin Huang, Wenhan Lyu, Yixuan Zhang, Xiner Li, Zhengliang Liu, Yixin Liu, Yijue Wang, Zhikun Zhang, Bhavya Kailkhura, Caiming Xiong, Chaowei Xiao, Chunyuan Li, Eric Xing, Furong Huang, Hao Liu, Heng Ji, Hongyi Wang, Huan Zhang, Huaxiu Yao, Manolis Kellis, Marinka Zitnik, Meng Jiang, Mohit Bansal, James Zou, Jian Pei, Jian Liu, Jianfeng Gao, Jiawei Han, Jieyu Zhao, Jiliang Tang, Jindong Wang, John Mitchell, Kai Shu, Kaidi Xu, Kai-Wei Chang, Lifang He, Lifu Huang, Michael Backes, Neil Zhenqiang Gong, Philip S. Yu, Pin-Yu Chen, Quanquan Gu, Ran Xu, Rex Ying, Shuiwang Ji, Suman Jana, Tianlong Chen, Tianming Liu, Tianyi Zhou, Willian Wang, Xiang Li, Xiangliang Zhang, Xiao Wang, Xing Xie, Xun Chen, Xuyu Wang, Yan Liu, Yanfang Ye, Yinzhi Cao, Yong Chen, Yue Zhao
3/4/2024 SEBERTNets: Sequence Enhanced BERT Networks for Event Entity Extraction Tasks Oriented to the Finance Field
Event extraction lies at the cores of investment analysis and asset management in the financial field, and thus has received much attention. The 2019 China conference on knowledge graph and semantic computing (CCKS) challenge sets up a evaluation competition for event entity extraction task oriented to the finance field. In this task, we mainly focus on how to extract the event entity accurately, and recall all the corresponding event entity effectively. In this paper, we propose a novel model, Sequence Enhanced BERT Networks (SEBERTNets for short), which can inherit the advantages of the BERT,and while capturing sequence semantic information. In addition, motivated by recommendation system, we propose Hybrid Sequence Enhanced BERT Networks (HSEBERTNets for short), which uses a multi-channel recall method to recall all the corresponding event entity. The experimental results show that, the F1 score of SEBERTNets is 0.905 in the first stage, and the F1 score of HSEBERTNets is 0.934 in the first stage, which demonstarate the effectiveness of our methods.
Congqing He, Xiangyu Zhu, Yuquan Le, Yuzhong Liu, Jianhong Yin
3/4/2024 Inferflow: an Efficient and Highly Configurable Inference Engine for Large Language Models
We present Inferflow, an efficient and highly configurable inference engine for large language models (LLMs). With Inferflow, users can serve most of the common transformer models by simply modifying some lines in corresponding configuration files, without writing a single line of source code. Compared with most existing inference engines, Inferflow has some key features. First, by implementing a modular framework of atomic build-blocks and technologies, Inferflow is compositionally generalizable to new models. Second, 3.5-bit quantization is introduced in Inferflow as a tradeoff between 3-bit and 4-bit quantization. Third, hybrid model partitioning for multi-GPU inference is introduced in Inferflow to better balance inference speed and throughput than the existing partition-by-layer and partition-by-tensor strategies.
Shuming Shi, Enbo Zhao, Deng Cai, Leyang Cui, Xinting Huang, Huayang Li
3/4/2024 LEGO:Language Enhanced Multi-modal Grounding Model
Multi-modal large language models have demonstrated impressive performance across various tasks in different modalities. However, existing multi-modal models primarily emphasize capturing global information within each modality while neglecting the importance of perceiving local information across modalities. Consequently, these models lack the ability to effectively understand the fine-grained details of input data, limiting their performance in tasks that require a more nuanced understanding. To address this limitation, there is a compelling need to develop models that enable fine-grained understanding across multiple modalities, thereby enhancing their applicability to a wide range of tasks. In this paper, we propose LEGO, a language enhanced multi-modal grounding model. Beyond capturing global information like other multi-modal models, our proposed model excels at tasks demanding a detailed understanding of local information within the input. It demonstrates precise identification and localization of specific regions in images or moments in videos. To achieve this objective, we design a diversified dataset construction pipeline, resulting in a multi-modal, multi-granularity dataset for model training. The code, dataset, and demo of our model can be found at https: //
Zhaowei Li, Qi Xu, Dong Zhang, Hang Song, Yiqing Cai, Qi Qi, Ran Zhou, Junting Pan, Zefeng Li, Van Tu Vu, Zhida Huang, Tao Wang
3/4/2024 OpenFedLLM: Training Large Language Models on Decentralized Private Data via Federated Learning
Trained on massive publicly available data, large language models (LLMs) have demonstrated tremendous success across various fields. While more data contributes to better performance, a disconcerting reality is that high-quality public data will be exhausted in a few years. In this paper, we offer a potential next step for contemporary LLMs: collaborative and privacy-preserving LLM training on the underutilized distributed private data via federated learning (FL), where multiple data owners collaboratively train a shared model without transmitting raw data. To achieve this, we build a concise, integrated, and research-friendly framework/codebase, named OpenFedLLM. It covers federated instruction tuning for enhancing instruction-following capability, federated value alignment for aligning with human values, and 7 representative FL algorithms. Besides, OpenFedLLM supports training on diverse domains, where we cover 8 training datasets; and provides comprehensive evaluations, where we cover 30+ evaluation metrics. Through extensive experiments, we observe that all FL algorithms outperform local training on training LLMs, demonstrating a clear performance improvement across a variety of settings. Notably, in a financial benchmark, Llama2-7B fine-tuned by applying any FL algorithm can outperform GPT-4 by a significant margin while the model obtained through individual training cannot, demonstrating strong motivation for clients to participate in FL. The code is available at this https URL.
Rui Ye, Wenhao Wang, Jingyi Chai, Dihan Li, Zexi Li, Yinda Xu, Yaxin Du, Yanfeng Wang, Siheng Chen
3/4/2024 INTERS: Unlocking the Power of Large Language Models in Search with Instruction Tuning
Large language models (LLMs) have demonstrated impressive capabilities in various natural language processing tasks. Despite this, their application to information retrieval (IR) tasks is still challenging due to the infrequent occurrence of many IR-specific concepts in natural language. While prompt-based methods can provide task descriptions to LLMs, they often fall short in facilitating comprehensive understanding and execution of IR tasks, thereby limiting LLMs' applicability. To address this gap, in this work, we explore the potential of instruction tuning to enhance LLMs' proficiency in IR tasks. We introduce a novel instruction tuning dataset, INTERS, encompassing 21 tasks across three fundamental IR categories: query understanding, document understanding, and query-document relationship understanding. The data are derived from 43 distinct datasets with manually written templates. Our empirical results reveal that INTERS significantly boosts the performance of various publicly available LLMs, such as LLaMA, Mistral, and Phi, in search-related tasks. Furthermore, we conduct a comprehensive analysis to ascertain the effects of base model selection, instruction design, volume of instructions, and task variety on performance. We make our dataset and the models fine-tuned on it publicly accessible at this https URL.
Yutao Zhu, Peitian Zhang, Chenghao Zhang, Yifei Chen, Binyu Xie, Zhicheng Dou, Zheng Liu, Ji-Rong Wen
3/4/2024 InternLM-Math: Open Math Large Language Models Toward Verifiable Reasoning
The math abilities of large language models can represent their abstract reasoning ability. In this paper, we introduce and open-source our math reasoning LLMs InternLM-Math which is continue pre-trained from InternLM2. We unify chain-of-thought reasoning, reward modeling, formal reasoning, data augmentation, and code interpreter in a unified seq2seq format and supervise our model to be a versatile math reasoner, verifier, prover, and augmenter. These abilities can be used to develop the next math LLMs or self-iteration. InternLM-Math obtains open-sourced state-of-the-art performance under the setting of in-context learning, supervised fine-tuning, and code-assisted reasoning in various informal and formal benchmarks including GSM8K, MATH, Hungary math exam, MathBench-ZH, and MiniF2F. Our pre-trained model achieves 30.3 on the MiniF2F test set without fine-tuning. We further explore how to use LEAN to solve math problems and study its performance under the setting of multi-task learning which shows the possibility of using LEAN as a unified platform for solving and proving in math. Our models, codes, and data are released at \url{this https URL}.
Huaiyuan Ying, Shuo Zhang, Linyang Li, Zhejian Zhou, Yunfan Shao, Zhaoye Fei, Yichuan Ma, Jiawei Hong, Kuikun Liu, Ziyi Wang, Yudong Wang, Zijian Wu, Shuaibin Li, Fengzhe Zhou, Hongwei Liu, Songyang Zhang, Wenwei Zhang, Hang Yan, Xipeng Qiu, Jiayu Wang, Kai Chen, Dahua Lin
3/4/2024 Benchmarking LLMs via Uncertainty Quantification
The proliferation of open-source Large Language Models (LLMs) from various institutions has highlighted the urgent need for comprehensive evaluation methods. However, current evaluation platforms, such as the widely recognized HuggingFace open LLM leaderboard, neglect a crucial aspect -- uncertainty, which is vital for thoroughly assessing LLMs. To bridge this gap, we introduce a new benchmarking approach for LLMs that integrates uncertainty quantification. Our examination involves eight LLMs (LLM series) spanning five representative natural language processing tasks. Additionally, we introduce an uncertainty-aware evaluation metric, UAcc, which takes into account both prediction accuracy and prediction uncertainty. Our findings reveal that: I) LLMs with higher accuracy may exhibit lower certainty; II) Larger-scale LLMs may display greater uncertainty compared to their smaller counterparts; and III) Instruction-finetuning tends to increase the uncertainty of LLMs. By taking uncertainty into account, our new UAcc metric can either amplify or diminish the relative improvement of one LLM over another and may even change the relative ranking of two LLMs. These results underscore the significance of incorporating uncertainty in the evaluation of LLMs.
Fanghua Ye, Mingming Yang, Jianhui Pang, Longyue Wang, Derek F. Wong, Emine Yilmaz, Shuming Shi, Zhaopeng Tu
3/4/2024 AgentBoard: An Analytical Evaluation Board of Multi-turn LLM Agents
Evaluating large language models (LLMs) as general-purpose agents is essential for understanding their capabilities and facilitating their integration into practical applications. However, the evaluation process presents substantial challenges. A primary obstacle is the benchmarking of agent performance across diverse scenarios within a unified framework, especially in maintaining partially-observable environments and ensuring multi-round interactions. Moreover, current evaluation frameworks mostly focus on the final success rate, revealing few insights during the process and failing to provide a deep understanding of the model abilities. To address these challenges, we introduce AgentBoard, a pioneering comprehensive benchmark and accompanied open-source evaluation framework tailored to analytical evaluation of LLM agents. AgentBoard offers a fine-grained progress rate metric that captures incremental advancements as well as a comprehensive evaluation toolkit that features easy assessment of agents for multi-faceted analysis through interactive visualization. This not only sheds light on the capabilities and limitations of LLM agents but also propels the interpretability of their performance to the forefront. Ultimately, AgentBoard serves as a significant step towards demystifying agent behaviors and accelerating the development of stronger LLM agents.
Chang Ma, Junlei Zhang, Zhihao Zhu, Cheng Yang, Yujiu Yang, Yaohui Jin, Zhenzhong Lan, Lingpeng Kong, Junxian He
3/4/2024 AesBench: An Expert Benchmark for Multimodal Large Language Models on Image Aesthetics Perception
With collective endeavors, multimodal large language models (MLLMs) are undergoing a flourishing development. However, their performances on image aesthetics perception remain indeterminate, which is highly desired in real-world applications. An obvious obstacle lies in the absence of a specific benchmark to evaluate the effectiveness of MLLMs on aesthetic perception. This blind groping may impede the further development of more advanced MLLMs with aesthetic perception capacity. To address this dilemma, we propose AesBench, an expert benchmark aiming to comprehensively evaluate the aesthetic perception capacities of MLLMs through elaborate design across dual facets. (1) We construct an Expert-labeled Aesthetics Perception Database (EAPD), which features diversified image contents and high-quality annotations provided by professional aesthetic experts. (2) We propose a set of integrative criteria to measure the aesthetic perception abilities of MLLMs from four perspectives, including Perception (AesP), Empathy (AesE), Assessment (AesA) and Interpretation (AesI). Extensive experimental results underscore that the current MLLMs only possess rudimentary aesthetic perception ability, and there is still a significant gap between MLLMs and humans. We hope this work can inspire the community to engage in deeper explorations on the aesthetic potentials of MLLMs. Source data will be available at this https URL.
Yipo Huang, Quan Yuan, Xiangfei Sheng, Zhichao Yang, Haoning Wu, Pengfei Chen, Yuzhe Yang, Leida Li, Weisi Lin
3/4/2024 Cleaner Pretraining Corpus Curation with Neural Web Scraping
The web contains large-scale, diverse, and abundant information to satisfy the information-seeking needs of humans. Through meticulous data collection, preprocessing, and curation, webpages can be used as a fundamental data resource for language model pretraining. However, when confronted with the progressively revolutionized and intricate nature of webpages, rule-based/feature-based web scrapers are becoming increasingly inadequate. This paper presents a simple, fast, and effective Neural web Scraper (NeuScraper) to help extract primary and clean text contents from webpages. Experimental results show that NeuScraper surpasses the baseline scrapers by achieving more than a 20% improvement, demonstrating its potential in extracting higher-quality data to facilitate the language model pretraining. All of the code is available at this https URL.
Zhipeng Xu, Zhenghao Liu, Yukun Yan, Zhiyuan Liu, Chenyan Xiong, Ge Yu
3/4/2024 BitDelta: Your Fine-Tune May Only Be Worth One Bit
Large Language Models (LLMs) are typically trained in two phases: pre-training on large internet-scale datasets, and fine-tuning for downstream tasks. Given the higher computational demand of pre-training, it's intuitive to assume that fine-tuning adds less new information to the model, and is thus more compressible. We explore this assumption by decomposing the weights of fine-tuned models into their pre-trained components and an additional delta. We introduce a simple method, BitDelta, which successfully quantizes this delta down to 1 bit without compromising performance. This interesting finding not only highlights the potential redundancy of information added during fine-tuning, but also has significant implications for the multi-tenant serving and multi-tenant storage of fine-tuned models. By enabling the use of a single high-precision base model accompanied by multiple 1-bit deltas, BitDelta dramatically reduces GPU memory requirements by more than 10x, which can also be translated to enhanced generation latency in multi-tenant settings. We validate BitDelta through experiments across Llama-2 and Mistral model families, and on models up to 70B parameters, showcasing minimal performance degradation over all tested settings.
James Liu, Guangxuan Xiao, Kai Li, Jason D. Lee, Song Han, Tri Dao, Tianle Cai
Jupyter Notebook
3/4/2024 Spotting LLMs With Binoculars: Zero-Shot Detection of Machine-Generated Text
Detecting text generated by modern large language models is thought to be hard, as both LLMs and humans can exhibit a wide range of complex behaviors. However, we find that a score based on contrasting two closely related language models is highly accurate at separating human-generated and machine-generated text. Based on this mechanism, we propose a novel LLM detector that only requires simple calculations using a pair of pre-trained LLMs. The method, called Binoculars, achieves state-of-the-art accuracy without any training data. It is capable of spotting machine text from a range of modern LLMs without any model-specific modifications. We comprehensively evaluate Binoculars on a number of text sources and in varied situations. Over a wide range of document types, Binoculars detects over 90% of generated samples from ChatGPT (and other LLMs) at a false positive rate of 0.01%, despite not being trained on any ChatGPT data.
Abhimanyu Hans, Avi Schwarzschild, Valeriia Cherepanova, Hamid Kazemi, Aniruddha Saha, Micah Goldblum, Jonas Geiping, Tom Goldstein
3/4/2024 Meta-Prompting: Enhancing Language Models with Task-Agnostic Scaffolding
We introduce meta-prompting, an effective scaffolding technique designed to enhance the functionality of language models (LMs). This approach transforms a single LM into a multi-faceted conductor, adept at managing and integrating multiple independent LM queries. By employing high-level instructions, meta-prompting guides the LM to break down complex tasks into smaller, more manageable subtasks. These subtasks are then handled by distinct "expert" instances of the same LM, each operating under specific, tailored instructions. Central to this process is the LM itself, in its role as the conductor, which ensures seamless communication and effective integration of the outputs from these expert models. It additionally employs its inherent critical thinking and robust verification processes to refine and authenticate the end result. This collaborative prompting approach empowers a single LM to simultaneously act as a comprehensive orchestrator and a panel of diverse experts, significantly enhancing its performance across a wide array of tasks. The zero-shot, task-agnostic nature of meta-prompting greatly simplifies user interaction by obviating the need for detailed, task-specific instructions. Furthermore, our research demonstrates the seamless integration of external tools, such as a Python interpreter, into the meta-prompting framework, thereby broadening its applicability and utility. Through rigorous experimentation with GPT-4, we establish the superiority of meta-prompting over conventional scaffolding methods: When averaged across all tasks, including the Game of 24, Checkmate-in-One, and Python Programming Puzzles, meta-prompting, augmented with a Python interpreter functionality, surpasses standard prompting by 17.1%, expert (dynamic) prompting by 17.3%, and multipersona prompting by 15.2%.
Mirac Suzgun, Adam Tauman Kalai
3/4/2024 MM-Interleaved: Interleaved Image-Text Generative Modeling via Multi-modal Feature Synchronizer
Developing generative models for interleaved image-text data has both research and practical value. It requires models to understand the interleaved sequences and subsequently generate images and text. However, existing attempts are limited by the issue that the fixed number of visual tokens cannot efficiently capture image details, which is particularly problematic in the multi-image scenarios. To address this, this paper presents MM-Interleaved, an end-to-end generative model for interleaved image-text data. It introduces a multi-scale and multi-image feature synchronizer module, allowing direct access to fine-grained image features in the previous context during the generation process. MM-Interleaved is end-to-end pre-trained on both paired and interleaved image-text corpora. It is further enhanced through a supervised fine-tuning phase, wherein the model improves its ability to follow complex multi-modal instructions. Experiments demonstrate the versatility of MM-Interleaved in recognizing visual details following multi-modal instructions and generating consistent images following both textual and visual conditions. Code and models are available at \url{this https URL}.
Changyao Tian, Xizhou Zhu, Yuwen Xiong, Weiyun Wang, Zhe Chen, Wenhai Wang, Yuntao Chen, Lewei Lu, Tong Lu, Jie Zhou, Hongsheng Li, Yu Qiao, Jifeng Dai
3/4/2024 GenTranslate: Large Language Models are Generative Multilingual Speech and Machine Translators
Recent advances in large language models (LLMs) have stepped forward the development of multilingual speech and machine translation by its reduced representation errors and incorporated external knowledge. However, both translation tasks typically utilize beam search decoding and top-1 hypothesis selection for inference. These techniques struggle to fully exploit the rich information in the diverse N-best hypotheses, making them less optimal for translation tasks that require a single, high-quality output sequence. In this paper, we propose a new generative paradigm for translation tasks, namely "GenTranslate", which builds upon LLMs to generate better results from the diverse translation versions in N-best list. Leveraging the rich linguistic knowledge and strong reasoning abilities of LLMs, our new paradigm can integrate the rich information in N-best candidates to generate a higher-quality translation result. Furthermore, to support LLM finetuning, we build and release a HypoTranslate dataset that contains over 592K hypotheses-translation pairs in 11 languages. Experiments on various speech and machine translation benchmarks (e.g., FLEURS, CoVoST-2, WMT) demonstrate that our GenTranslate significantly outperforms the state-of-the-art model.
Yuchen Hu, Chen Chen, Chao-Han Huck Yang, Ruizhe Li, Dong Zhang, Zhehuai Chen, Eng Siong Chng
3/4/2024 DrugAssist: A Large Language Model for Molecule Optimization
Recently, the impressive performance of large language models (LLMs) on a wide range of tasks has attracted an increasing number of attempts to apply LLMs in drug discovery. However, molecule optimization, a critical task in the drug discovery pipeline, is currently an area that has seen little involvement from LLMs. Most of existing approaches focus solely on capturing the underlying patterns in chemical structures provided by the data, without taking advantage of expert feedback. These non-interactive approaches overlook the fact that the drug discovery process is actually one that requires the integration of expert experience and iterative refinement. To address this gap, we propose DrugAssist, an interactive molecule optimization model which performs optimization through human-machine dialogue by leveraging LLM's strong interactivity and generalizability. DrugAssist has achieved leading results in both single and multiple property optimization, simultaneously showcasing immense potential in transferability and iterative optimization. In addition, we publicly release a large instruction-based dataset called MolOpt-Instructions for fine-tuning language models on molecule optimization tasks. We have made our code and data publicly available at this https URL, which we hope to pave the way for future research in LLMs' application for drug discovery.
Geyan Ye, Xibao Cai, Houtim Lai, Xing Wang, Junhong Huang, Longyue Wang, Wei Liu, Xiangxiang Zeng
3/4/2024 Wordflow: Social Prompt Engineering for Large Language Models
Large language models (LLMs) require well-crafted prompts for effective use. Prompt engineering, the process of designing prompts, is challenging, particularly for non-experts who are less familiar with AI technologies. While researchers have proposed techniques and tools to assist LLM users in prompt design, these works primarily target AI application developers rather than non-experts. To address this research gap, we propose social prompt engineering, a novel paradigm that leverages social computing techniques to facilitate collaborative prompt design. To investigate social prompt engineering, we introduce Wordflow, an open-source and social text editor that enables everyday users to easily create, run, share, and discover LLM prompts. Additionally, by leveraging modern web technologies, Wordflow allows users to run LLMs locally and privately in their browsers. Two usage scenarios highlight how social prompt engineering and our tool can enhance laypeople's interaction with LLMs. Wordflow is publicly accessible at this https URL.
Zijie J. Wang, Aishwarya Chakravarthy, David Munechika, Duen Horng Chau
3/4/2024 Unlocking Efficiency in Large Language Model Inference: A Comprehensive Survey of Speculative Decoding
To mitigate the high inference latency stemming from autoregressive decoding in Large Language Models (LLMs), Speculative Decoding has emerged as a novel decoding paradigm for LLM inference. In each decoding step, this method first efficiently drafts several future tokens and then verifies them in parallel. Unlike autoregressive decoding, Speculative Decoding facilitates the simultaneous decoding of multiple tokens per step, thereby accelerating inference. This paper presents a comprehensive overview and analysis of this promising decoding paradigm. We begin by providing a formal definition and formulation of Speculative Decoding. Then, we organize in-depth discussions on its key facets, including current leading techniques, the challenges faced, and potential future directions in this field. We aim for this work to serve as a catalyst for further research on Speculative Decoding, ultimately contributing to more efficient LLM inference.
Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang, Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, Zhifang Sui
3/4/2024 Transformers are Multi-State RNNs
Transformers are considered conceptually different compared to the previous generation of state-of-the-art NLP models - recurrent neural networks (RNNs). In this work, we demonstrate that decoder-only transformers can in fact be conceptualized as infinite multi-state RNNs - an RNN variant with unlimited hidden state size. We further show that pretrained transformers can be converted into $\textit{finite}$ multi-state RNNs by fixing the size of their hidden state. We observe that several existing transformers cache compression techniques can be framed as such conversion policies, and introduce a novel policy, TOVA, which is simpler compared to these policies. Our experiments with several long range tasks indicate that TOVA outperforms all other baseline policies, while being nearly on par with the full (infinite) model, and using in some cases only $\frac{1}{8}$ of the original cache size. Our results indicate that transformer decoder LLMs often behave in practice as RNNs. They also lay out the option of mitigating one of their most painful computational bottlenecks - the size of their cache memory. We publicly release our code at this https URL.
Matanel Oren, Michael Hassid, Yossi Adi, Roy Schwartz
3/4/2024 A Survey on Neural Topic Models: Methods, Applications, and Challenges
Topic models have been prevalent for decades to discover latent topics and infer topic proportions of documents in an unsupervised fashion. They have been widely used in various applications like text analysis and context recommendation. Recently, the rise of neural networks has facilitated the emergence of a new research field -- Neural Topic Models (NTMs). Different from conventional topic models, NTMs directly optimize parameters without requiring model-specific derivations. This endows NTMs with better scalability and flexibility, resulting in significant research attention and plentiful new methods and applications. In this paper, we present a comprehensive survey on neural topic models concerning methods, applications, and challenges. Specifically, we systematically organize current NTM methods according to their network structures and introduce the NTMs for various scenarios like short texts and cross-lingual documents. We also discuss a wide range of popular applications built on NTMs. Finally, we highlight the challenges confronted by NTMs to inspire future research.
Xiaobao Wu, Thong Nguyen, Anh Tuan Luu
Jupyter Notebook
3/4/2024 Corrective Retrieval Augmented Generation
Large language models (LLMs) inevitably exhibit hallucinations since the accuracy of generated texts cannot be secured solely by the parametric knowledge they encapsulate. Although retrieval-augmented generation (RAG) is a practicable complement to LLMs, it relies heavily on the relevance of retrieved documents, raising concerns about how the model behaves if retrieval goes wrong. To this end, we propose the Corrective Retrieval Augmented Generation (CRAG) to improve the robustness of generation. Specifically, a lightweight retrieval evaluator is designed to assess the overall quality of retrieved documents for a query, returning a confidence degree based on which different knowledge retrieval actions can be triggered. Since retrieval from static and limited corpora can only return sub-optimal documents, large-scale web searches are utilized as an extension for augmenting the retrieval results. Besides, a decompose-then-recompose algorithm is designed for retrieved documents to selectively focus on key information and filter out irrelevant information in them. CRAG is plug-and-play and can be seamlessly coupled with various RAG-based approaches. Experiments on four datasets covering short- and long-form generation tasks show that CRAG can significantly improve the performance of RAG-based approaches.
Shi-Qi Yan, Jia-Chen Gu, Yun Zhu, Zhen-Hua Ling
3/4/2024 Auffusion: Leveraging the Power of Diffusion and Large Language Models for Text-to-Audio Generation
Recent advancements in diffusion models and large language models (LLMs) have significantly propelled the field of AIGC. Text-to-Audio (TTA), a burgeoning AIGC application designed to generate audio from natural language prompts, is attracting increasing attention. However, existing TTA studies often struggle with generation quality and text-audio alignment, especially for complex textual inputs. Drawing inspiration from state-of-the-art Text-to-Image (T2I) diffusion models, we introduce Auffusion, a TTA system adapting T2I model frameworks to TTA task, by effectively leveraging their inherent generative strengths and precise cross-modal alignment. Our objective and subjective evaluations demonstrate that Auffusion surpasses previous TTA approaches using limited data and computational resource. Furthermore, previous studies in T2I recognizes the significant impact of encoder choice on cross-modal alignment, like fine-grained details and object bindings, while similar evaluation is lacking in prior TTA works. Through comprehensive ablation studies and innovative cross-attention map visualizations, we provide insightful assessments of text-audio alignment in TTA. Our findings reveal Auffusion's superior capability in generating audios that accurately match textual descriptions, which further demonstrated in several related tasks, such as audio style transfer, inpainting and other manipulations. Our implementation and demos are available at this https URL.
Jinlong Xue, Yayue Deng, Yingming Gao, Ya Li
Jupyter Notebook
3/4/2024 L3Cube-MahaSocialNER: A Social Media based Marathi NER Dataset and BERT models
This work introduces the L3Cube-MahaSocialNER dataset, the first and largest social media dataset specifically designed for Named Entity Recognition (NER) in the Marathi language. The dataset comprises 18,000 manually labeled sentences covering eight entity classes, addressing challenges posed by social media data, including non-standard language and informal idioms. Deep learning models, including CNN, LSTM, BiLSTM, and Transformer models, are evaluated on the individual dataset with IOB and non-IOB notations. The results demonstrate the effectiveness of these models in accurately recognizing named entities in Marathi informal text. The L3Cube-MahaSocialNER dataset offers user-centric information extraction and supports real-time applications, providing a valuable resource for public opinion analysis, news, and marketing on social media platforms. We also show that the zero-shot results of the regular NER model are poor on the social NER test set thus highlighting the need for more social NER datasets. The datasets and models are publicly available at this https URL
Harsh Chaudhari, Anuja Patil, Dhanashree Lavekar, Pranav Khairnar, Raviraj Joshi
Jupyter Notebook
3/4/2024 CRUD-RAG: A Comprehensive Chinese Benchmark for Retrieval-Augmented Generation of Large Language Models
Retrieval-Augmented Generation (RAG) is a technique that enhances the capabilities of large language models (LLMs) by incorporating external knowledge sources. This method addresses common LLM limitations, including outdated information and the tendency to produce inaccurate "hallucinated" content. However, the evaluation of RAG systems is challenging, as existing benchmarks are limited in scope and diversity. Most of the current benchmarks predominantly assess question-answering applications, overlooking the broader spectrum of situations where RAG could prove advantageous. Moreover, they only evaluate the performance of the LLM component of the RAG pipeline in the experiments, and neglect the influence of the retrieval component and the external knowledge database. To address these issues, this paper constructs a large-scale and more comprehensive benchmark, and evaluates all the components of RAG systems in various RAG application scenarios. Specifically, we have categorized the range of RAG applications into four distinct types-Create, Read, Update, and Delete (CRUD), each representing a unique use case. "Create" refers to scenarios requiring the generation of original, varied content. "Read" involves responding to intricate questions in knowledge-intensive situations. "Update" focuses on revising and rectifying inaccuracies or inconsistencies in pre-existing texts. "Delete" pertains to the task of summarizing extensive texts into more concise forms. For each of these CRUD categories, we have developed comprehensive datasets to evaluate the performance of RAG systems. We also analyze the effects of various components of the RAG system, such as the retriever, the context length, the knowledge base construction, and the LLM. Finally, we provide useful insights for optimizing the RAG technology for different scenarios.
Yuanjie Lyu, Zhiyu Li, Simin Niu, Feiyu Xiong, Bo Tang, Wenjin Wang, Hao Wu, Huanyong Liu, Tong Xu, Enhong Chen
3/4/2024 Scientific Large Language Models: A Survey on Biological & Chemical Domains
Large Language Models (LLMs) have emerged as a transformative power in enhancing natural language comprehension, representing a significant stride toward artificial general intelligence. The application of LLMs extends beyond conventional linguistic boundaries, encompassing specialized linguistic systems developed within various scientific disciplines. This growing interest has led to the advent of scientific LLMs, a novel subclass specifically engineered for facilitating scientific discovery. As a burgeoning area in the community of AI for Science, scientific LLMs warrant comprehensive exploration. However, a systematic and up-to-date survey introducing them is currently lacking. In this paper, we endeavor to methodically delineate the concept of "scientific language", whilst providing a thorough review of the latest advancements in scientific LLMs. Given the expansive realm of scientific disciplines, our analysis adopts a focused lens, concentrating on the biological and chemical domains. This includes an in-depth examination of LLMs for textual knowledge, small molecules, macromolecular proteins, genomic sequences, and their combinations, analyzing them in terms of model architectures, capabilities, datasets, and evaluation. Finally, we critically examine the prevailing challenges and point out promising research directions along with the advances of LLMs. By offering a comprehensive overview of technical developments in this field, this survey aspires to be an invaluable resource for researchers navigating the intricate landscape of scientific LLMs.
Qiang Zhang, Keyang Ding, Tianwen Lyv, Xinda Wang, Qingyu Yin, Yiwen Zhang, Jing Yu, Yuhao Wang, Xiaotong Li, Zhuoyi Xiang, Xiang Zhuang, Zeyuan Wang, Ming Qin, Mengyao Zhang, Jinlu Zhang, Jiyu Cui, Renjun Xu, Hongyang Chen, Xiaohui Fan, Huabin Xing, Huajun Chen
3/4/2024 Towards Building Multilingual Language Model for Medicine
In this paper, we aim to develop an open-source, multilingual language model for medicine, that the benefits a wider, linguistically diverse audience from different regions. In general, we present the contribution from the following aspects: first, for multilingual medical-specific adaptation, we construct a new multilingual medical corpus, that contains approximately 25.5B tokens encompassing 6 main languages, termed as MMedC, that enables auto-regressive training for existing general LLMs. second, to monitor the development of multilingual LLMs in medicine, we propose a new multilingual medical multi-choice question-answering benchmark with rationale, termed as MMedBench; third, we have assessed a number of popular, opensource large language models (LLMs) on our benchmark, along with those further auto-regressive trained on MMedC, as a result, our final model, termed as MMedLM 2, with only 7B parameters, achieves superior performance compared to all other open-source models, even rivaling GPT-4 on MMedBench. We will make the resources publicly available, including code, model weights, and datasets.
Pengcheng Qiu, Chaoyi Wu, Xiaoman Zhang, Weixiong Lin, Haicheng Wang, Ya Zhang, Yanfeng Wang, Weidi Xie
3/4/2024 A Survey on Knowledge Distillation of Large Language Models
In the era of Large Language Models (LLMs), Knowledge Distillation (KD) emerges as a pivotal methodology for transferring advanced capabilities from leading proprietary LLMs, such as GPT-4, to their open-source counterparts like LLaMA and Mistral. Additionally, as open-source LLMs flourish, KD plays a crucial role in both compressing these models, and facilitating their self-improvement by employing themselves as teachers. This paper presents a comprehensive survey of KD's role within the realm of LLM, highlighting its critical function in imparting advanced knowledge to smaller models and its utility in model compression and self-improvement. Our survey is meticulously structured around three foundational pillars: \textit{algorithm}, \textit{skill}, and \textit{verticalization} -- providing a comprehensive examination of KD mechanisms, the enhancement of specific cognitive abilities, and their practical implications across diverse fields. Crucially, the survey navigates the intricate interplay between data augmentation (DA) and KD, illustrating how DA emerges as a powerful paradigm within the KD framework to bolster LLMs' performance. By leveraging DA to generate context-rich, skill-specific training data, KD transcends traditional boundaries, enabling open-source models to approximate the contextual adeptness, ethical alignment, and deep semantic insights characteristic of their proprietary counterparts. This work aims to provide an insightful guide for researchers and practitioners, offering a detailed overview of current methodologies in KD and proposing future research directions. Importantly, we firmly advocate for compliance with the legal terms that regulate the use of LLMs, ensuring ethical and lawful application of KD of LLMs. An associated Github repository is available at this https URL.
Xiaohan Xu, Ming Li, Chongyang Tao, Tao Shen, Reynold Cheng, Jinyang Li, Can Xu, Dacheng Tao, Tianyi Zhou
3/4/2024 OpenMathInstruct-1: A 1.8 Million Math Instruction Tuning Dataset
Recent work has shown the immense potential of synthetically generated datasets for training large language models (LLMs), especially for acquiring targeted skills. Current large-scale math instruction tuning datasets such as MetaMathQA (Yu et al., 2024) and MAmmoTH (Yue et al., 2024) are constructed using outputs from closed-source LLMs with commercially restrictive licenses. A key reason limiting the use of open-source LLMs in these data generation pipelines has been the wide gap between the mathematical skills of the best closed-source LLMs, such as GPT-4, and the best open-source LLMs. Building on the recent progress in open-source LLMs, our proposed prompting novelty, and some brute-force scaling, we construct OpenMathInstruct-1, a math instruction tuning dataset with 1.8M problem-solution pairs. The dataset is constructed by synthesizing code-interpreter solutions for GSM8K and MATH, two popular math reasoning benchmarks, using the recently released and permissively licensed Mixtral model. Our best model, OpenMath-CodeLlama-70B, trained on a subset of OpenMathInstruct-1, achieves a score of 84.6% on GSM8K and 50.7% on MATH, which is competitive with the best gpt-distilled models. We release our code, models, and the OpenMathInstruct-1 dataset under a commercially permissive license.
Shubham Toshniwal, Ivan Moshkov, Sean Narenthiran, Daria Gitman, Fei Jia, Igor Gitman
3/4/2024 GeoGalactica: A Scientific Large Language Model in Geoscience
Large language models (LLMs) have achieved huge success for their general knowledge and ability to solve a wide spectrum of tasks in natural language processing (NLP). Due to their impressive abilities, LLMs have shed light on potential inter-discipline applications to foster scientific discoveries of a specific domain by using artificial intelligence (AI for science, AI4S). In the meantime, utilizing NLP techniques in geoscience research and practice is wide and convoluted, contributing from knowledge extraction and document classification to question answering and knowledge discovery. In this work, we take the initial step to leverage LLM for science, through a rather straightforward approach. We try to specialize an LLM into geoscience, by further pre-training the model with a vast amount of texts in geoscience, as well as supervised fine-tuning (SFT) the resulting model with our custom collected instruction tuning dataset. These efforts result in a model GeoGalactica consisting of 30 billion parameters. To our best knowledge, it is the largest language model for the geoscience domain. More specifically, GeoGalactica is from further pre-training of Galactica. We train GeoGalactica over a geoscience-related text corpus containing 65 billion tokens curated from extensive data sources in the big science project Deep-time Digital Earth (DDE), preserving as the largest geoscience-specific text corpus. Then we fine-tune the model with 1 million pairs of instruction-tuning data consisting of questions that demand professional geoscience knowledge to answer. In this technical report, we will illustrate in detail all aspects of GeoGalactica, including data collection, data cleaning, base model selection, pre-training, SFT, and evaluation. We open-source our data curation tools and the checkpoints of GeoGalactica during the first 3/4 of pre-training.
Zhouhan Lin, Cheng Deng, Le Zhou, Tianhang Zhang, Yi Xu, Yutong Xu, Zhongmou He, Yuanyuan Shi, Beiya Dai, Yunchong Song, Boyi Zeng, Qiyuan Chen, Tao Shi, Tianyu Huang, Yiwei Xu, Shu Wang, Luoyi Fu, Weinan Zhang, Junxian He, Chao Ma, Yunqiang Zhu, Xinbing Wang, Chenghu Zhou
3/4/2024 ALLaVA: Harnessing GPT4V-synthesized Data for A Lite Vision-Language Model
Recent advancements in Large Vision-Language Models (LVLMs) have enabled processing of multimodal inputs in language models but require significant computational resources for deployment, especially in edge devices. This study aims to bridge the performance gap between traditional-scale LVLMs and resource-friendly lite versions by adopting high-quality training data. To do this, a synthetic dataset is created by leveraging GPT-4V's ability to generate detailed captions, complex reasoning instructions and detailed answers from images. The resulted model trained with our data, ALLaVA, achieves competitive performance on 12 benchmarks up to 3B LVLMs. This work highlights the feasibility of adopting high-quality data in crafting more efficient LVLMs. Our online demo is available at \url{this https URL}.
Guiming Hardy Chen, Shunian Chen, Ruifei Zhang, Junying Chen, Xiangbo Wu, Zhiyi Zhang, Zhihong Chen, Jianquan Li, Xiang Wan, Benyou Wang
3/4/2024 Unitxt: Flexible, Shareable and Reusable Data Preparation and Evaluation for Generative AI
In the dynamic landscape of generative NLP, traditional text processing pipelines limit research flexibility and reproducibility, as they are tailored to specific dataset, task, and model combinations. The escalating complexity, involving system prompts, model-specific formats, instructions, and more, calls for a shift to a structured, modular, and customizable solution. Addressing this need, we present Unitxt, an innovative library for customizable textual data preparation and evaluation tailored to generative language models. Unitxt natively integrates with common libraries like HuggingFace and LM-eval-harness and deconstructs processing flows into modular components, enabling easy customization and sharing between practitioners. These components encompass model-specific formats, task prompts, and many other comprehensive dataset processing definitions. The Unitxt-Catalog centralizes these components, fostering collaboration and exploration in modern textual data workflows. Beyond being a tool, Unitxt is a community-driven platform, empowering users to build, share, and advance their pipelines collaboratively. Join the Unitxt community at this https URL
Elron Bandel, Yotam Perlitz, Elad Venezian, Roni Friedman-Melamed, Ofir Arviv, Matan Orbach, Shachar Don-Yehyia, Dafna Sheinwald, Ariel Gera, Leshem Choshen, Michal Shmueli-Scheuer, Yoav Katz
3/4/2024 LongAlign: A Recipe for Long Context Alignment of Large Language Models
Extending large language models to effectively handle long contexts requires instruction fine-tuning on input sequences of similar length. To address this, we present LongAlign -- a recipe of the instruction data, training, and evaluation for long context alignment. First, we construct a long instruction-following dataset using Self-Instruct. To ensure the data diversity, it covers a broad range of tasks from various long context sources. Second, we adopt the packing and sorted batching strategies to speed up supervised fine-tuning on data with varied length distributions. Additionally, we develop a loss weighting method to balance the contribution to the loss across different sequences during packing training. Third, we introduce the LongBench-Chat benchmark for evaluating instruction-following capabilities on queries of 10k-100k in length. Experiments show that LongAlign outperforms existing recipes for LLMs in long context tasks by up to 30\%, while also maintaining their proficiency in handling short, generic tasks. The code, data, and long-aligned models are open-sourced at this https URL.
Yushi Bai, Xin Lv, Jiajie Zhang, Yuze He, Ji Qi, Lei Hou, Jie Tang, Yuxiao Dong, Juanzi Li
3/4/2024 Formal-LLM: Integrating Formal Language and Natural Language for Controllable LLM-based Agents
Recent advancements on Large Language Models (LLMs) enable AI Agents to automatically generate and execute multi-step plans to solve complex tasks. However, since LLM's content generation process is hardly controllable, current LLM-based agents frequently generate invalid or non-executable plans, which jeopardizes the performance of the generated plans and corrupts users' trust in LLM-based agents. In response, this paper proposes a novel ``Formal-LLM'' framework for LLM-based agents by integrating the expressiveness of natural language and the precision of formal language. Specifically, the framework allows human users to express their requirements or constraints for the planning process as an automaton. A stack-based LLM plan generation process is then conducted under the supervision of the automaton to ensure that the generated plan satisfies the constraints, making the planning process controllable. We conduct experiments on both benchmark tasks and practical real-life tasks, and our framework achieves over 50% overall performance increase, which validates the feasibility and effectiveness of employing Formal-LLM to guide the plan generation of agents, preventing the agents from generating invalid and unsuccessful plans. Further, more controllable LLM-based agents can facilitate the broader utilization of LLM in application scenarios where high validity of planning is essential. The work is open-sourced at this https URL.
Zelong Li, Wenyue Hua, Hao Wang, He Zhu, Yongfeng Zhang
3/4/2024 Extending LLMs' Context Window with 100 Samples
Large Language Models (LLMs) are known to have limited extrapolation ability beyond their pre-trained context window, constraining their application in downstream tasks with lengthy inputs. Recent studies have sought to extend LLMs' context window by modifying rotary position embedding (RoPE), a popular position encoding method adopted by well-known LLMs such as LLaMA, PaLM, and GPT-NeoX. However, prior works like Position Interpolation (PI) and YaRN are resource-intensive and lack comparative experiments to assess their applicability. In this work, we identify the inherent need for LLMs' attention entropy (i.e. the information entropy of attention scores) to maintain stability and introduce a novel extension to RoPE which combines adjusting RoPE's base frequency and scaling the attention logits to help LLMs efficiently adapt to a larger context window. We validate the superiority of our method in both fine-tuning performance and robustness across different context window sizes on various context-demanding tasks. Notably, our method extends the context window of LLaMA-2-7B-Chat to 16,384 with only 100 samples and 6 training steps, showcasing extraordinary efficiency. Finally, we also explore how data compositions and training curricula affect context window extension for specific downstream tasks, suggesting fine-tuning LLMs with lengthy conversations as a good starting point. We release our code and SFT data at this https URL.
Yikai Zhang, Junlong Li, Pengfei Liu
3/4/2024 Neeko: Leveraging Dynamic LoRA for Efficient Multi-Character Role-Playing Agent
Large Language Models (LLMs) have revolutionized open-domain dialogue agents but encounter challenges in multi-character role-playing (MCRP) scenarios. To address the issue, we present Neeko, an innovative framework designed for efficient multiple characters imitation. Unlike existing methods, Neeko employs a dynamic low-rank adapter (LoRA) strategy, enabling it to adapt seamlessly to diverse characters. Our framework breaks down the role-playing process into agent pre-training, multiple characters playing, and character incremental learning, effectively handling both seen and unseen roles. This dynamic approach, coupled with distinct LoRA blocks for each character, enhances Neeko's adaptability to unique attributes, personalities, and speaking patterns. As a result, Neeko demonstrates superior performance in MCRP over most existing methods, offering more engaging and versatile user interaction experiences. Code and data are available at this https URL.
Xiaoyan Yu, Tongxu Luo, Yifan Wei, Fangyu Lei, Yiming Huang, Peng Hao, Liehuang Zhu
3/4/2024 QuRating: Selecting High-Quality Data for Training Language Models
Selecting high-quality pre-training data is important for creating capable language models, but existing methods rely on simple heuristics. We introduce QuRating, a method for selecting pre-training data that captures the abstract qualities of texts which humans intuitively perceive. In this paper, we investigate four qualities - writing style, required expertise, facts & trivia, and educational value. We find that LLMs are able to discern these qualities and observe that they are better at making pairwise judgments of texts than at rating the quality of a text directly. We train a QuRater model to learn scalar ratings from pairwise judgments, and use it to annotate a 260B training corpus with quality ratings for each of the four criteria. In our experiments, we select 30B tokens according to the different quality ratings and train 1.3B-parameter language models on the selected data. We find that it is important to balance quality and diversity, as selecting only the highest-rated documents leads to poor results. When we sample using quality ratings as logits over documents, our models achieve lower perplexity and stronger in-context learning performance than baselines. Beyond data selection, we use the quality ratings to construct a training curriculum which improves performance without changing the training dataset. We extensively analyze the quality ratings and discuss their characteristics, biases, and wider implications.
Alexander Wettig, Aatmik Gupta, Saumya Malik, Danqi Chen
3/4/2024 TURNA: A Turkish Encoder-Decoder Language Model for Enhanced Understanding and Generation
The recent advances in natural language processing have predominantly favored well-resourced English-centric models, resulting in a significant gap with low-resource languages. In this work, we introduce the language model TURNA, which is developed for the low-resource language Turkish and is capable of both natural language understanding and generation tasks. TURNA is pretrained with an encoder-decoder architecture based on the unified framework UL2 with a diverse corpus that we specifically curated for this purpose. We evaluated TURNA with three generation tasks and five understanding tasks for Turkish. The results show that TURNA outperforms several multilingual models in both understanding and generation tasks, and competes with monolingual Turkish models in understanding tasks. TURNA is made available at this https URL .
Gokce Uludogan, Zeynep Yirmibesoglu Balal, Furkan Akkurt, Meliksah Turker, Onur Gungor, Susan Uskudarh
3/4/2024 Sleeper Agents: Training Deceptive LLMs that Persist Through Safety Training
Humans are capable of strategically deceptive behavior: behaving helpfully in most situations, but then behaving very differently in order to pursue alternative objectives when given the opportunity. If an AI system learned such a deceptive strategy, could we detect it and remove it using current state-of-the-art safety training techniques? To study this question, we construct proof-of-concept examples of deceptive behavior in large language models (LLMs). For example, we train models that write secure code when the prompt states that the year is 2023, but insert exploitable code when the stated year is 2024. We find that such backdoor behavior can be made persistent, so that it is not removed by standard safety training techniques, including supervised fine-tuning, reinforcement learning, and adversarial training (eliciting unsafe behavior and then training to remove it). The backdoor behavior is most persistent in the largest models and in models trained to produce chain-of-thought reasoning about deceiving the training process, with the persistence remaining even when the chain-of-thought is distilled away. Furthermore, rather than removing backdoors, we find that adversarial training can teach models to better recognize their backdoor triggers, effectively hiding the unsafe behavior. Our results suggest that, once a model exhibits deceptive behavior, standard techniques could fail to remove such deception and create a false impression of safety.
Evan Hubinger, Carson Denison, Jesse Mu, Mike Lambert, Meg Tong, Monte MacDiarmid, Tamera Lanham, Daniel M. Ziegler, Tim Maxwell, Newton Cheng, Adam Jermyn, Amanda Askell, Ansh Radhakrishnan, Cem Anil, David Duvenaud, Deep Ganguli, Fazl Barez, Jack Clark, Kamal Ndousse, Kshitij Sachan, Michael Sellitto, Mrinank Sharma, Nova DasSarma, Roger Grosse, Shauna Kravec, Yuntao Bai, Zachary Witten, Marina Favaro, Jan Brauner, Holden Karnofsky, Paul Christiano, Samuel R. Bowman, Logan Graham, Jared Kaplan, S�ren Mindermann, Ryan Greenblatt, Buck Shlegeris, Nicholas Schiefer, Ethan Perez
3/4/2024 MouSi: Poly-Visual-Expert Vision-Language Models
Current large vision-language models (VLMs) often encounter challenges such as insufficient capabilities of a single visual component and excessively long visual tokens. These issues can limit the model's effectiveness in accurately interpreting complex visual information and over-lengthy contextual information. Addressing these challenges is crucial for enhancing the performance and applicability of VLMs. This paper proposes the use of ensemble experts technique to synergizes the capabilities of individual visual encoders, including those skilled in image-text matching, OCR, image segmentation, etc. This technique introduces a fusion network to unify the processing of outputs from different visual experts, while bridging the gap between image encoders and pre-trained LLMs. In addition, we explore different positional encoding schemes to alleviate the waste of positional encoding caused by lengthy image feature sequences, effectively addressing the issue of position overflow and length limitations. For instance, in our implementation, this technique significantly reduces the positional occupancy in models like SAM, from a substantial 4096 to a more efficient and manageable 64 or even down to 1. Experimental results demonstrate that VLMs with multiple experts exhibit consistently superior performance over isolated visual encoders and mark a significant performance boost as more experts are integrated. We have open-sourced the training code used in this report. All of these resources can be found on our project website.
Xiaoran Fan, Tao Ji, Changhao Jiang, Shuo Li, Senjie Jin, Sirui Song, Junke Wang, Boyang Hong, Lu Chen, Guodong Zheng, Ming Zhang, Caishuang Huang, Rui Zheng, Zhiheng Xi, Yuhao Zhou, Shihan Dou, Junjie Ye, Hang Yan, Tao Gui, Qi Zhang, Xipeng Qiu, Xuanjing Huang, Zuxuan Wu, Yu-Gang Jiang
3/4/2024 Benchmarking Retrieval-Augmented Generation for Medicine
While large language models (LLMs) have achieved state-of-the-art performance on a wide range of medical question answering (QA) tasks, they still face challenges with hallucinations and outdated knowledge. Retrieval-augmented generation (RAG) is a promising solution and has been widely adopted. However, a RAG system can involve multiple flexible components, and there is a lack of best practices regarding the optimal RAG setting for various medical purposes. To systematically evaluate such systems, we propose the Medical Information Retrieval-Augmented Generation Evaluation (MIRAGE), a first-of-its-kind benchmark including 7,663 questions from five medical QA datasets. Using MIRAGE, we conducted large-scale experiments with over 1.8 trillion prompt tokens on 41 combinations of different corpora, retrievers, and backbone LLMs through the MedRAG toolkit introduced in this work. Overall, MedRAG improves the accuracy of six different LLMs by up to 18% over chain-of-thought prompting, elevating the performance of GPT-3.5 and Mixtral to GPT-4-level. Our results show that the combination of various medical corpora and retrievers achieves the best performance. In addition, we discovered a log-linear scaling property and the "lost-in-the-middle" effects in medical RAG. We believe our comprehensive evaluations can serve as practical guidelines for implementing RAG systems for medicine.
Guangzhi Xiong, Qiao Jin, Zhiyong Lu, Aidong Zhang
3/4/2024 Recovering the Pre-Fine-Tuning Weights of Generative Models
The dominant paradigm in generative modeling consists of two steps: i) pre-training on a large-scale but unsafe dataset, ii) aligning the pre-trained model with human values via fine-tuning. This practice is considered safe, as no current method can recover the unsafe, pre-fine-tuning model weights. In this paper, we demonstrate that this assumption is often false. Concretely, we present Spectral DeTuning, a method that can recover the weights of the pre-fine-tuning model using a few low-rank (LoRA) fine-tuned models. In contrast to previous attacks that attempt to recover pre-fine-tuning capabilities, our method aims to recover the exact pre-fine-tuning weights. Our approach exploits this new vulnerability against large-scale models such as a personalized Stable Diffusion and an aligned Mistral.
Eliahu Horwitz, Jonathan Kahana, Yedid Hoshen
3/4/2024 A StrongREJECT for Empty Jailbreaks
The rise of large language models (LLMs) has drawn attention to the existence of "jailbreaks" that allow the models to be used maliciously. However, there is no standard benchmark for measuring the severity of a jailbreak, leaving authors of jailbreak papers to create their own. We show that these benchmarks often include vague or unanswerable questions and use grading criteria that are biased towards overestimating the misuse potential of low-quality model responses. Some jailbreak techniques make the problem worse by decreasing the quality of model responses even on benign questions: we show that several jailbreaking techniques substantially reduce the zero-shot performance of GPT-4 on MMLU. Jailbreaks can also make it harder to elicit harmful responses from an "uncensored" open-source model. We present a new benchmark, StrongREJECT, which better discriminates between effective and ineffective jailbreaks by using a higher-quality question set and a more accurate response grading algorithm. We show that our new grading scheme better accords with human judgment of response quality and overall jailbreak effectiveness, especially on the sort of low-quality responses that contribute the most to over-estimation of jailbreak performance on existing benchmarks. We release our code and data at this https URL.
Alexandra Souly, Qingyuan Lu, Dillon Bowen, Tu Trinh, Elvis Hsieh, Sana Pandey, Pieter Abbeel, Justin Svegliato, Scott Emmons, Olivia Watkins, Sam Toyer
Jupyter Notebook
3/4/2024 PreFLMR: Scaling Up Fine-Grained Late-Interaction Multi-modal Retrievers
Large Multimodal Models (LMMs) excel in natural language and visual understanding but are challenged by exacting tasks such as Knowledge-based Visual Question Answering (KB-VQA) which involve the retrieval of relevant information from document collections to use in shaping answers to questions. We present an extensive training and evaluation framework, M2KR, for KB-VQA. M2KR contains a collection of vision and language tasks which we have incorporated into a single suite of benchmark tasks for training and evaluating general-purpose multi-modal retrievers. We use M2KR to develop PreFLMR, a pre-trained version of the recently developed Fine-grained Late-interaction Multi-modal Retriever (FLMR) approach to KB-VQA, and we report new state-of-the-art results across a range of tasks. We also present investigations into the scaling behaviors of PreFLMR intended to be useful in future developments in general-purpose multi-modal retrievers.
Weizhe Lin, Jingbiao Mei, Jinghong Chen, Bill Byrne
3/4/2024 InstructDoc: A Dataset for Zero-Shot Generalization of Visual Document Understanding with Instructions
We study the problem of completing various visual document understanding (VDU) tasks, e.g., question answering and information extraction, on real-world documents through human-written instructions. To this end, we propose InstructDoc, the first large-scale collection of 30 publicly available VDU datasets, each with diverse instructions in a unified format, which covers a wide range of 12 tasks and includes open document types/formats. Furthermore, to enhance the generalization performance on VDU tasks, we design a new instruction-based document reading and understanding model, InstructDr, that connects document images, image encoders, and large language models (LLMs) through a trainable bridging module. Experiments demonstrate that InstructDr can effectively adapt to new VDU datasets, tasks, and domains via given instructions and outperforms existing multimodal LLMs and ChatGPT without specific training.
Ryota Tanaka, Taichi Iki, Kyosuke Nishida, Kuniko Saito, Jun Suzuki
3/4/2024 Selective Reflection-Tuning: Student-Selected Data Recycling for LLM Instruction-Tuning
Instruction tuning is critical to large language models (LLMs) for achieving better instruction following and task adaptation capabilities but its success heavily relies on the training data quality. Many recent methods focus on improving the data quality but often overlook the compatibility of the data with the student model being finetuned. This paper introduces Selective Reflection-Tuning, a novel paradigm that synergizes a teacher LLM's reflection and introspection for improving existing data quality with the data selection capability of the student LLM, to automatically refine existing instruction-tuning data. This teacher-student collaboration produces high-quality and student-compatible instruction-response pairs, resulting in sample-efficient instruction tuning and LLMs of superior performance. Selective Reflection-Tuning is a data augmentation and synthesis that generally improves LLM finetuning and self-improvement without collecting brand-new data. We apply our method to Alpaca and WizardLM data and achieve much stronger and top-tier 7B and 13B LLMs. Our codes, models, and data will be released at this https URL.
Ming Li, Lichang Chen, Jiuhai Chen, Shwai He, Jiuxiang Gu, Tianyi Zhou
3/4/2024 Large Language Models are Efficient Learners of Noise-Robust Speech Recognition
Recent advances in large language models (LLMs) have promoted generative error correction (GER) for automatic speech recognition (ASR), which leverages the rich linguistic knowledge and powerful reasoning ability of LLMs to improve recognition results. The latest work proposes a GER benchmark with HyPoradise dataset to learn the mapping from ASR N-best hypotheses to ground-truth transcription by efficient LLM finetuning, which shows great effectiveness but lacks specificity on noise-robust ASR. In this work, we extend the benchmark to noisy conditions and investigate if we can teach LLMs to perform denoising for GER just like what robust ASR do}, where one solution is introducing noise information as a conditioner into LLM. However, directly incorporating noise embeddings from audio encoder could harm the LLM tuning due to cross-modality gap. To this end, we propose to extract a language-space noise embedding from the N-best list to represent the noise conditions of source speech, which can promote the denoising process in GER. Furthermore, in order to enhance its representation ability of audio noise, we design a knowledge distillation (KD) approach via mutual information estimation to distill the real noise information in audio embeddings to our language embedding. Experiments on various latest LLMs demonstrate our approach achieves a new breakthrough with up to 53.9% correction improvement in terms of word error rate while with limited training data. Analysis shows that our language-space noise embedding can well represent the noise conditions of source speech, under which off-the-shelf LLMs show strong ability of language-space denoising.
Yuchen Hu, Chen Chen, Chao-Han Huck Yang, Ruizhe Li, Chao Zhang, Pin-Yu Chen, EnSiong Chng
3/4/2024 Astraios: Parameter-Efficient Instruction Tuning Code Large Language Models
The high cost of full-parameter fine-tuning (FFT) of Large Language Models (LLMs) has led to a series of parameter-efficient fine-tuning (PEFT) methods. However, it remains unclear which methods provide the best cost-performance trade-off at different model scales. We introduce Astraios, a suite of 28 instruction-tuned OctoCoder models using 7 tuning methods and 4 model sizes up to 16 billion parameters. Through investigations across 5 tasks and 8 different datasets encompassing both code comprehension and code generation tasks, we find that FFT generally leads to the best downstream performance across all scales, and PEFT methods differ significantly in their efficacy based on the model scale. LoRA usually offers the most favorable trade-off between cost and performance. Further investigation into the effects of these methods on both model robustness and code security reveals that larger models tend to demonstrate reduced robustness and less security. At last, we explore the relationships among updated parameters, cross-entropy loss, and task performance. We find that the tuning effectiveness observed in small models generalizes well to larger models, and the validation loss in instruction tuning can be a reliable indicator of overall downstream performance.
Terry Yue Zhuo, Armel Zebaze, Nitchakarn Suppattarachai, Leandro von Werra, Harm de Vries, Qian Liu, Niklas Muennighoff
Jupyter Notebook
3/4/2024 SciGLM: Training Scientific Language Models with Self-Reflective Instruction Annotation and Tuning
\label{sec:abstract} Large Language Models (LLMs) have shown promise in assisting scientific discovery. However, such applications are currently limited by LLMs' deficiencies in understanding intricate scientific concepts, deriving symbolic equations, and solving advanced numerical calculations. To bridge these gaps, we introduce SciGLM, a suite of scientific language models able to conduct college-level scientific reasoning. Central to our approach is a novel self-reflective instruction annotation framework to address the data scarcity challenge in the science domain. This framework leverages existing LLMs to generate step-by-step reasoning for unlabelled scientific questions, followed by a process of self-reflective critic-and-revise. Applying this framework, we curated SciInstruct, a diverse and high-quality dataset encompassing mathematics, physics, chemistry, and formal proofs. We fine-tuned the ChatGLM family of language models with SciInstruct, enhancing their capabilities in scientific and mathematical reasoning. Remarkably, SciGLM consistently improves both the base model (ChatGLM3-6B-Base) and larger-scale models (12B and 32B), without sacrificing the language understanding capabilities of the base model. This makes SciGLM a suitable foundational model to facilitate diverse scientific discovery tasks. For the benefit of the wider research community, we release SciInstruct, SciGLM, alongside a self-reflective framework and fine-tuning code at \url{this https URL}.
Dan Zhang, Ziniu Hu, Sining Zhoubian, Zhengxiao Du, Kaiyu Yang, Zihan Wang, Yisong Yue, Yuxiao Dong, Jie Tang
3/4/2024 With Greater Text Comes Greater Necessity: Inference-Time Training Helps Long Text Generation
Long text generation, such as novel writing or discourse-level translation with extremely long contexts, presents significant challenges to current language models. Existing methods mainly focus on extending the model's context window through strategies like length extrapolation. However, these approaches demand substantial hardware resources during the training and/or inference phases. Our proposed method, Temp-Lora, introduces an alternative concept. Instead of relying on the KV cache to store all context information, Temp-Lora embeds this information directly into the model's parameters. In the process of long text generation, we use a temporary Lora module, progressively trained with text generated previously. This approach not only efficiently preserves contextual knowledge but also prevents any permanent alteration to the model's parameters given that the module is discarded post-generation. Extensive experiments on the PG19 language modeling benchmark and the GuoFeng discourse-level translation benchmark validate the effectiveness of Temp-Lora. Our results show that: 1) Temp-Lora substantially enhances generation quality for long texts, as indicated by a 13.2% decrease in perplexity on a subset of PG19, and a 29.6% decrease in perplexity along with a 53.2% increase in BLEU score on GuoFeng, 2) Temp-Lora is compatible with and enhances most existing long text generation methods, and 3) Temp-Lora can greatly reduce computational costs by shortening the context window. While ensuring a slight improvement in generation quality (a decrease of 3.8% in PPL), it enables a reduction of 70.5% in the FLOPs required for inference and a 51.5% decrease in latency.
Y. Wang, D. Ma, D. Cai
3/4/2024 Data Science with LLMs and Interpretable Models
Recent years have seen important advances in the building of interpretable models, machine learning models that are designed to be easily understood by humans. In this work, we show that large language models (LLMs) are remarkably good at working with interpretable models, too. In particular, we show that LLMs can describe, interpret, and debug Generalized Additive Models (GAMs). Combining the flexibility of LLMs with the breadth of statistical patterns accurately described by GAMs enables dataset summarization, question answering, and model critique. LLMs can also improve the interaction between domain experts and interpretable models, and generate hypotheses about the underlying phenomenon. We release \url{this https URL} as an open-source LLM-GAM interface.
Sebastian Bordt, Ben Lengerich, Harsha Nori, Rich Caruana
Jupyter Notebook
3/4/2024 ToolEyes: Fine-Grained Evaluation for Tool Learning Capabilities of Large Language Models in Real-world Scenarios
Existing evaluations of tool learning primarily focus on validating the alignment of selected tools for large language models (LLMs) with expected outcomes. However, these approaches rely on a limited set of scenarios where answers can be pre-determined, diverging from genuine needs. Furthermore, a sole emphasis on outcomes disregards the intricate capabilities essential for LLMs to effectively utilize tools. To tackle this issue, we propose ToolEyes, a fine-grained system tailored for the evaluation of the LLMs' tool learning capabilities in authentic scenarios. The system meticulously examines seven real-world scenarios, analyzing five dimensions crucial to LLMs in tool learning: format alignment, intent comprehension, behavior planning, tool selection, and answer organization. Additionally, ToolEyes incorporates a tool library boasting approximately 600 tools, serving as an intermediary between LLMs and the physical world. Evaluations involving ten LLMs across three categories reveal a preference for specific scenarios and limited cognitive abilities in tool learning. Intriguingly, expanding the model size even exacerbates the hindrance to tool learning. These findings offer instructive insights aimed at advancing the field of tool learning. The data is available att this https URL.
Junjie Ye, Guanyu Li, Songyang Gao, Caishuang Huang, Yilong Wu, Sixian Li, Xiaoran Fan, Shihan Dou, Qi Zhang, Tao Gui, Xuanjing Huang
3/4/2024 RAGTruth: A Hallucination Corpus for Developing Trustworthy Retrieval-Augmented Language Models
Retrieval-augmented generation (RAG) has become a main technique for alleviating hallucinations in large language models (LLMs). Despite the integration of RAG, LLMs may still present unsupported or contradictory claims to the retrieved contents. In order to develop effective hallucination prevention strategies under RAG, it is important to create benchmark datasets that can measure the extent of hallucination. This paper presents RAGTruth, a corpus tailored for analyzing word-level hallucinations in various domains and tasks within the standard RAG frameworks for LLM applications. RAGTruth comprises nearly 18,000 naturally generated responses from diverse LLMs using RAG. These responses have undergone meticulous manual annotations at both the individual cases and word levels, incorporating evaluations of hallucination intensity. We not only benchmark hallucination frequencies across different LLMs, but also critically assess the effectiveness of several existing hallucination detection methodologies. Furthermore, we show that using a high-quality dataset such as RAGTruth, it is possible to finetune a relatively small LLM and achieve a competitive level of performance in hallucination detection when compared to the existing prompt-based approaches using state-of-the-art large language models such as GPT-4.
Yuanhao Wu, Juno Zhu, Siliang Xu, Kashun Shum, Cheng Niu, Randy Zhong, Juntong Song, Tong Zhang
3/4/2024 Airavata: Introducing Hindi Instruction-tuned LLM
We announce the initial release of "Airavata," an instruction-tuned LLM for Hindi. Airavata was created by fine-tuning OpenHathi with diverse, instruction-tuning Hindi datasets to make it better suited for assistive tasks. Along with the model, we also share the IndicInstruct dataset, which is a collection of diverse instruction-tuning datasets to enable further research for Indic LLMs. Additionally, we present evaluation benchmarks and a framework for assessing LLM performance across tasks in Hindi. Currently, Airavata supports Hindi, but we plan to expand this to all 22 scheduled Indic languages. You can access all artifacts at this https URL.
Jay Gala, Thanmay Jayakumar, Jaavid Aktar Husain, Aswanth Kumar M, Mohammed Safi Ur Rahman Khan, Diptesh Kanojia, Ratish Puduppully, Mitesh M. Khapra, Raj Dabre, Rudra Murthy, Anoop Kunchukuttan
3/4/2024 On the Efficacy of Eviction Policy for Key-Value Constrained Generative Language Model Inference
Despite the recent success associated with Large Language Models~(LLMs), they are notably cost-prohibitive to deploy in resource-constrained environments due to their excessive memory and computational demands. In addition to model parameters, the key-value cache is also stored in GPU memory, growing linearly with batch size and sequence length. As a remedy, recent works have proposed various eviction policies for maintaining the overhead of key-value cache under a given budget. This paper embarks on the efficacy of existing eviction policies in terms of \textit{importance score calculation} and \textit{eviction scope construction}. We identify the deficiency of prior policies in these two aspects and introduce RoCo, a \underline{r}\underline{o}bust \underline{c}ache \underline{o}mission policy based on temporal attention scores and robustness measures. Extensive experimentation spanning prefilling and auto-regressive decoding stages validates the superiority of RoCo. Finally, we release EasyKV, a versatile software package dedicated to user-friendly key-value constrained generative inference. Code available at \url{this https URL}.
Siyu Ren, Kenny Q. Zhu
3/4/2024 Agent Smith: A Single Image Can Jailbreak One Million Multimodal LLM Agents Exponentially Fast
A multimodal large language model (MLLM) agent can receive instructions, capture images, retrieve histories from memory, and decide which tools to use. Nonetheless, red-teaming efforts have revealed that adversarial images/prompts can jailbreak an MLLM and cause unaligned behaviors. In this work, we report an even more severe safety issue in multi-agent environments, referred to as infectious jailbreak. It entails the adversary simply jailbreaking a single agent, and without any further intervention from the adversary, (almost) all agents will become infected exponentially fast and exhibit harmful behaviors. To validate the feasibility of infectious jailbreak, we simulate multi-agent environments containing up to one million LLaVA-1.5 agents, and employ randomized pair-wise chat as a proof-of-concept instantiation for multi-agent interaction. Our results show that feeding an (infectious) adversarial image into the memory of any randomly chosen agent is sufficient to achieve infectious jailbreak. Finally, we derive a simple principle for determining whether a defense mechanism can provably restrain the spread of infectious jailbreak, but how to design a practical defense that meets this principle remains an open question to investigate. Our project page is available at this https URL.
Xiangming Gu, Xiaosen Zheng, Tianyu Pang, Chao Du, Qian Liu, Ye Wang, Jing Jiang, Min Lin
3/4/2024 Reformatted Alignment
The quality of finetuning data is crucial for aligning large language models (LLMs) with human values. Current methods to improve data quality are either labor-intensive or prone to factual errors caused by LLM hallucinations. This paper explores elevating the quality of existing instruction data to better align with human values, introducing a simple and effective approach named ReAlign, which reformats the responses of instruction data into a format that better aligns with pre-established criteria and the collated evidence. This approach minimizes human annotation, hallucination, and the difficulty in scaling, remaining orthogonal to existing alignment techniques. Experimentally, ReAlign significantly boosts the general alignment ability, math reasoning, factuality, and readability of the LLMs. Encouragingly, without introducing any additional data or advanced training techniques, and merely by reformatting the response, LLaMA-2-13B's mathematical reasoning ability on GSM8K can be improved from 46.77% to 56.63% in accuracy. Additionally, a mere 5% of ReAlign data yields a 67% boost in general alignment ability measured by the Alpaca dataset. This work highlights the need for further research into the science and mechanistic interpretability of LLMs. We have made the associated code and data publicly accessible to support future studies at this https URL.
Run-Ze Fan, Xuefeng Li, Haoyang Zou, Junlong Li, Shwai He, Ethan Chern, Jiewen Hu, Pengfei Liu
3/4/2024 Higher Layers Need More LoRA Experts
Parameter-efficient tuning (PEFT) techniques like low-rank adaptation (LoRA) offer training efficiency on Large Language Models, but their impact on model performance remains limited. Recent efforts integrate LoRA and Mixture-of-Experts (MoE) to improve the performance of PEFT methods. Despite promising results, research on improving the efficiency of LoRA with MoE is still in its early stages. Recent studies have shown that experts in the MoE architecture have different strengths and also exhibit some redundancy. Does this statement also apply to parameter-efficient MoE? In this paper, we introduce a novel parameter-efficient MoE method, \textit{\textbf{M}oE-L\textbf{o}RA with \textbf{L}ayer-wise Expert \textbf{A}llocation (MoLA)} for Transformer-based models, where each model layer has the flexibility to employ a varying number of LoRA experts. We investigate several architectures with varying layer-wise expert configurations. Experiments on six well-known NLP and commonsense QA benchmarks demonstrate that MoLA achieves equal or superior performance compared to all baselines. We find that allocating more LoRA experts to higher layers further enhances the effectiveness of models with a certain number of experts in total. With much fewer parameters, this allocation strategy outperforms the setting with the same number of experts in every layer. This work can be widely used as a plug-and-play parameter-efficient tuning approach for various applications. The code is available at this https URL.
Chongyang Gao, Kezhen Chen, Jinmeng Rao, Baochen Sun, Ruibo Liu, Daiyi Peng, Yawen Zhang, Xiaoyuan Guo, Jie Yang, VS Subrahmanian
3/4/2024 Do Membership Inference Attacks Work on Large Language Models?
Membership inference attacks (MIAs) attempt to predict whether a particular datapoint is a member of a target model's training data. Despite extensive research on traditional machine learning models, there has been limited work studying MIA on the pre-training data of large language models (LLMs). We perform a large-scale evaluation of MIAs over a suite of language models (LMs) trained on the Pile, ranging from 160M to 12B parameters. We find that MIAs barely outperform random guessing for most settings across varying LLM sizes and domains. Our further analyses reveal that this poor performance can be attributed to (1) the combination of a large dataset and few training iterations, and (2) an inherently fuzzy boundary between members and non-members. We identify specific settings where LLMs have been shown to be vulnerable to membership inference and show that the apparent success in such settings can be attributed to a distribution shift, such as when members and non-members are drawn from the seemingly identical domain but with different temporal ranges. We release our code and data as a unified benchmark package that includes all existing MIAs, supporting future work.
Michael Duan, Anshuman Suri, Niloofar Mireshghallah, Sewon Min, Weijia Shi, Luke Zettlemoyer, Yulia Tsvetkov, Yejin Choi, David Evans, Hannaneh Hajishirzi
Jupyter Notebook
3/4/2024 Truth Forest: Toward Multi-Scale Truthfulness in Large Language Models through Intervention without Tuning
Despite the great success of large language models (LLMs) in various tasks, they suffer from generating hallucinations. We introduce Truth Forest, a method that enhances truthfulness in LLMs by uncovering hidden truth representations using multi-dimensional orthogonal probes. Specifically, it creates multiple orthogonal bases for modeling truth by incorporating orthogonal constraints into the probes. Moreover, we introduce Random Peek, a systematic technique considering an extended range of positions within the sequence, reducing the gap between discerning and generating truth features in LLMs. By employing this approach, we improved the truthfulness of Llama-2-7B from 40.8\% to 74.5\% on TruthfulQA. Likewise, significant improvements are observed in fine-tuned models. We conducted a thorough analysis of truth features using probes. Our visualization results show that orthogonal probes capture complementary truth-related features, forming well-defined clusters that reveal the inherent structure of the dataset. Code: \url{this https URL}
Zhongzhi Chen, Xingwu Sun, Xianfeng Jiao, Fengzong Lian, Zhanhui Kang, Di Wang, Cheng-Zhong Xu
3/4/2024 CogGPT: Unleashing the Power of Cognitive Dynamics on Large Language Models
Cognitive dynamics are pivotal to advance human understanding of the world. Recent advancements in large language models (LLMs) reveal their potential for cognitive simulation. However, these LLM-based cognitive studies primarily focus on static modeling, overlooking the dynamic nature of cognition. To bridge this gap, we propose the concept of the cognitive dynamics of LLMs and present a corresponding task with the inspiration of longitudinal studies. Towards the task, we develop CogBench, a novel benchmark to assess the cognitive dynamics of LLMs and validate it through participant surveys. We also design two evaluation metrics for CogBench, including Authenticity and Rationality. Recognizing the inherent static nature of LLMs, we introduce CogGPT for the task, which features an innovative iterative cognitive mechanism aimed at enhancing lifelong cognitive dynamics. Empirical results demonstrate the superiority of CogGPT over existing methods, particularly in its ability to facilitate role-specific cognitive dynamics under continuous information flows.
Yaojia Lv, Haojie Pan, Ruiji Fu, Ming Liu, Zhongyuan Wang, Bing Qin
3/4/2024 A Survey of Pre-trained Language Models for Processing Scientific Text
The number of Language Models (LMs) dedicated to processing scientific text is on the rise. Keeping pace with the rapid growth of scientific LMs (SciLMs) has become a daunting task for researchers. To date, no comprehensive surveys on SciLMs have been undertaken, leaving this issue unaddressed. Given the constant stream of new SciLMs, appraising the state-of-the-art and how they compare to each other remain largely unknown. This work fills that gap and provides a comprehensive review of SciLMs, including an extensive analysis of their effectiveness across different domains, tasks and datasets, and a discussion on the challenges that lie ahead.
Xanh Ho, Anh Khoa Duong Nguyen, An Tuan Dao, Junfeng Jiang, Yuki Chida, Kaito Sugimoto, Huy Quoc To, Florian Boudin, Akiko Aizawa
3/4/2024 Coercing LLMs to do and reveal (almost) anything
It has recently been shown that adversarial attacks on large language models (LLMs) can "jailbreak" the model into making harmful statements. In this work, we argue that the spectrum of adversarial attacks on LLMs is much larger than merely jailbreaking. We provide a broad overview of possible attack surfaces and attack goals. Based on a series of concrete examples, we discuss, categorize and systematize attacks that coerce varied unintended behaviors, such as misdirection, model control, denial-of-service, or data extraction. We analyze these attacks in controlled experiments, and find that many of them stem from the practice of pre-training LLMs with coding capabilities, as well as the continued existence of strange "glitch" tokens in common LLM vocabularies that should be removed for security reasons.
Jonas Geiping, Alex Stein, Manli Shu, Khalid Saifullah, Yuxin Wen, Tom Goldstein
3/4/2024 AutoMathText: Autonomous Data Selection with Language Models for Mathematical Texts
To improve language models' proficiency in mathematical reasoning via continual pretraining, we introduce a novel strategy that leverages base language models for autonomous data selection. Departing from conventional supervised fine-tuning or trained classifiers with human-annotated data, our approach utilizes meta-prompted language models as zero-shot verifiers to autonomously evaluate and select high-quality mathematical content, and we release the curated open-source AutoMathText dataset encompassing over 200GB of data. To demonstrate the efficacy of our method, we continuously pretrained a 7B-parameter Mistral language model on the AutoMathText dataset, achieving substantial improvements in downstream performance on the MATH dataset with a token amount reduced by orders of magnitude compared to previous continuous pretraining works. Our method showcases a 2 times increase in pretraining token efficiency compared to baselines, underscoring the potential of our approach in enhancing models' mathematical reasoning capabilities. The AutoMathText dataset is available at this https URL. The code is available at this https URL.
Yifan Zhang, Yifan Luo, Yang Yuan, Andrew Chi-Chih Yao