The NLP Index

Magical Software ⚡

Total repos: 8,250
hits:
time: ms
Added Title Abstract Authors Paper Graph Code
7/3/2022 BigBIO: A Framework for Data-Centric Biomedical Natural Language Processing
Training and evaluating language models increasingly requires the construction of meta-datasets --diverse collections of curated data with clear provenance. Natural language prompting has recently lead to improved zero-shot generalization by transforming existing, supervised datasets into a diversity of novel pretraining tasks, highlighting the benefits of meta-dataset curation. While successful in general-domain text, translating these data-centric approaches to biomedical language modeling remains challenging, as labeled biomedical datasets are significantly underrepresented in popular data hubs. To address this challenge, we introduce BigBIO a community library of 126+ biomedical NLP datasets, currently covering 12 task categories and 10+ languages. BigBIO facilitates reproducible meta-dataset curation via programmatic access to datasets and their metadata, and is compatible with current platforms for prompt engineering and end-to-end few/zero shot language model evaluation. We discuss our process for task schema harmonization, data auditing, contribution guidelines, and outline two illustrative use cases: zero-shot evaluation of biomedical prompts and large-scale, multi-task learning. BigBIO is an ongoing community effort and is available at this https URL
Jason Alan Fries, Leon Weber, Natasha Seelam, Gabriel Altay, Debajyoti Datta, Samuele Garda, Myungsun Kang, Ruisi Su, Wojciech Kusa, Samuel Cahyawijaya, Fabio Barth, Simon Ott, Matthias Samwald, Stephen Bach, Stella Biderman, Mario Sanger, Bo Wang, Alison Callahan, Daniel Leon Perinan, Theo Gigant, Patrick Haller, Jenny Chim, Jose David Posada, John Michael Giorgi, Karthik Rangasai Sivaraman, Marc Pamies, Marianna Nezhurina, Robert Martin, Michael Cullan, Moritz Freidank, Nathan Dahlberg, Shubhanshu Mishra, Shamik Bose, Nicholas Michio Broad, Yanis Labrak, Shlok S Deshmukh, Sid Kiblawi, Ayush Singh, Minh Chien Vu, Trishala Neeraj, Jonas Golde, Albert Villanova del Moral, Benjamin Beilharz
140
Python
7/3/2022 Prosody Cloning in Zero-Shot Multispeaker Text-to-Speech
The cloning of a speaker's voice using an untranscribed reference sample is one of the great advances of modern neural text-to-speech (TTS) methods. Approaches for mimicking the prosody of a transcribed reference audio have also been proposed recently. In this work, we bring these two tasks together for the first time through utterance level normalization in conjunction with an utterance level speaker embedding. We further introduce a lightweight aligner for extracting fine-grained prosodic features, that can be finetuned on individual samples within seconds. We show that it is possible to clone the voice of a speaker as well as the prosody of a spoken reference independently without any degradation in quality and high similarity to both original voice and prosody, as our objective evaluation and human study show. All of our code and trained models are available, alongside static and interactive demos.
Florian Lux, Julia Koch, Ngoc Thang Vu
126
Python
7/3/2022 Center-Embedding and Constituency in the Brain and a New Characterization of Context-Free Languages
A computational system implemented exclusively through the spiking of neurons was recently shown capable of syntax, that is, of carrying out the dependency parsing of simple English sentences. We address two of the most important questions left open by that work: constituency (the identification of key parts of the sentence such as the verb phrase) and the processing of dependent sentences, especially center-embedded ones. We show that these two aspects of language can also be implemented by neurons and synapses in a way that is compatible with what is known, or widely believed, about the structure and function of the language organ. Surprisingly, the way we implement center embedding points to a new characterization of context-free languages.
Daniel Mitropolsky, Adiba Ejaz, Mirah Shi, Mihalis Yannakakis, Christos H. Papadimitriou
58
Python
7/3/2022 Endowing Language Models with Multimodal Knowledge Graph Representations
We propose a method to make natural language understanding models more parameter efficient by storing knowledge in an external knowledge graph (KG) and retrieving from this KG using a dense index. Given (possibly multilingual) downstream task data, e.g., sentences in German, we retrieve entities from the KG and use their multimodal representations to improve downstream task performance. We use the recently released VisualSem KG as our external knowledge repository, which covers a subset of Wikipedia and WordNet entities, and compare a mix of tuple-based and graph-based algorithms to learn entity and relation representations that are grounded on the KG multimodal information. We demonstrate the usefulness of the learned entity representations on two downstream tasks, and show improved performance on the multilingual named entity recognition task by $0.3\%$--$0.7\%$ F1, while we achieve up to $2.5\%$ improvement in accuracy on the visual sense disambiguation task. All our code and data are available in: \url{this https URL}.
Ningyuan Huang, Yash R. Deshpande, Yibo Liu, Houda Alberts, Kyunghyun Cho, Clara Vania, Iacer Calixto
50
Python
7/3/2022 Forecasting Future World Events with Neural Networks
Forecasting future world events is a challenging but valuable task. Forecasts of climate, geopolitical conflict, pandemics and economic indicators help shape policy and decision making. In these domains, the judgment of expert humans contributes to the best forecasts. Given advances in language modeling, can these forecasts be automated? To this end, we introduce Autocast, a dataset containing thousands of forecasting questions and an accompanying news corpus. Questions are taken from forecasting tournaments, ensuring high quality, real-world importance, and diversity. The news corpus is organized by date, allowing us to precisely simulate the conditions under which humans made past forecasts (avoiding leakage from the future). Motivated by the difficulty of forecasting numbers across orders of magnitude (e.g. global cases of COVID-19 in 2022), we also curate IntervalQA, a dataset of numerical questions and metrics for calibration. We test language models on our forecasting task and find that performance is far below a human expert baseline. However, performance improves with increased model size and incorporation of relevant information from the news corpus. In sum, Autocast poses a novel challenge for large language models and improved performance could bring large practical benefits.
Andy Zou, Tristan Xiao, Ryan Jia, Joe Kwon, Mantas Mazeika, Richard Li, Dawn Song, Jacob Steinhardt, Owain Evans, Dan Hendrycks
30
Jupyter Notebook
7/3/2022 MVP: Multi-task Supervised Pre-training for Natural Language Generation
Pre-trained language models (PLMs) have achieved notable success in natural language generation (NLG) tasks. Up to now, most of the PLMs are pre-trained in an unsupervised manner using large-scale general corpus. In the meanwhile, an increasing number of models pre-trained with less labeled data showcase superior performance compared to unsupervised models. Motivated by the success of supervised pre-training, we propose Multi-task superVised Pre-training (MVP) for natural language generation. For pre-training the text generation model MVP, we collect a labeled pre-training corpus from 45 datasets over seven generation tasks. For each task, we further pre-train specific soft prompts to stimulate the model capacity in performing a specific task. Extensive experiments have demonstrated the effectiveness of our supervised pre-training in a number of NLG tasks, and our general methods achieve state-of-the-art performance on 12 of 17 datasets.
Tianyi Tang, Junyi Li, Wayne Xin Zhao, Ji-Rong Wen
10
Python
7/3/2022 DetIE: Multilingual Open Information Extraction Inspired by Object Detection
State of the art neural methods for open information extraction (OpenIE) usually extract triplets (or tuples) iteratively in an autoregressive or predicate-based manner in order not to produce duplicates. In this work, we propose a different approach to the problem that can be equally or more successful. Namely, we present a novel single-pass method for OpenIE inspired by object detection algorithms from computer vision. We use an order-agnostic loss based on bipartite matching that forces unique predictions and a Transformer-based encoder-only architecture for sequence labeling. The proposed approach is faster and shows superior or similar performance in comparison with state of the art models on standard benchmarks in terms of both quality metrics and inference time. Our model sets the new state of the art performance of 67.7% F1 on CaRB evaluated as OIE2016 while being 3.35x faster at inference than previous state of the art. We also evaluate the multilingual version of our model in the zero-shot setting for two languages and introduce a strategy for generating synthetic multilingual data to fine-tune the model for each specific language. In this setting, we show performance improvement 15% on multilingual Re-OIE2016, reaching 75% F1 for both Portuguese and Spanish languages. Code and models are available at this https URL.
Michael Vasilkovsky, Anton Alekseev, Valentin Malykh, Ilya Shenbin, Elena Tutubalina, Dmitriy Salikhov, Mikhail Stepnov, Andrey Chertok, Sergey Nikolenko
7
Python
7/3/2022 Few-Shot Fine-Grained Entity Typing with Automatic Label Interpretation and Instance Generation
We study the problem of few-shot Fine-grained Entity Typing (FET), where only a few annotated entity mentions with contexts are given for each entity type. Recently, prompt-based tuning has demonstrated superior performance to standard fine-tuning in few-shot scenarios by formulating the entity type classification task as a ''fill-in-the-blank'' problem. This allows effective utilization of the strong language modeling capability of Pre-trained Language Models (PLMs). Despite the success of current prompt-based tuning approaches, two major challenges remain: (1) the verbalizer in prompts is either manually designed or constructed from external knowledge bases, without considering the target corpus and label hierarchy information, and (2) current approaches mainly utilize the representation power of PLMs, but have not explored their generation power acquired through extensive general-domain pre-training. In this work, we propose a novel framework for few-shot FET consisting of two modules: (1) an entity type label interpretation module automatically learns to relate type labels to the vocabulary by jointly leveraging few-shot instances and the label hierarchy, and (2) a type-based contextualized instance generator produces new instances based on given instances to enlarge the training set for better generalization. On three benchmark datasets, our model outperforms existing methods by significant margins. Code can be found at this https URL.
Jiaxin Huang, Yu Meng, Jiawei Han
7
Python
7/3/2022 Simplifying Dataflow Dialogue Design
In \citep{andreas2020task-oriented}, a dataflow (DF) based dialogue system was introduced, showing clear advantages compared to many commonly used current systems. This was accompanied by the release of SMCalFlow, a practically relevant, manually annotated dataset, more detailed and much larger than any comparable dialogue dataset. Despite these remarkable contributions, the community has not shown further interest in this direction. What are the reasons for this lack of interest? And how can the community be encouraged to engage in research in this direction? One explanation may be the perception that this approach is too complex - both the the annotation and the system. This paper argues that this perception is wrong: 1) Suggestions for a simplified format for the annotation of the dataset are presented, 2) An implementation of the DF execution engine is released\footnote{this https URL}, which can serve as a sandbox allowing researchers to easily implement, and experiment with, new DF dialogue designs. The hope is that these contributions will help engage more practitioners in exploring new ideas and designs for DF based dialogue systems.
Joram Meron
5
Python
7/3/2022 Simplifying Semantic Annotations of SMCalFlow
SMCalFlow is a large corpus of semantically detailed annotations of task-oriented natural dialogues. The annotations use a dataflow approach, in which the annotations are programs which represent user requests. Despite the availability, size and richness of this annotated corpus, it has seen only very limited use in dialogue systems research work, at least in part due to the difficulty in understanding and using the annotations. To address these difficulties, this paper suggests a simplification of the SMCalFlow annotations, as well as releases code needed to inspect the execution of the annotated dataflow programs, which should allow researchers of dialogue systems an easy entry point to experiment with various dataflow based implementations and annotations.
Joram Meron
5
Python
7/3/2022 NERDA-Con: Extending NER models for Continual Learning -- Integrating Distinct Tasks and Updating Distribution Shifts
With increasing applications in areas such as biomedical information extraction pipelines and social media analytics, Named Entity Recognition (NER) has become an indispensable tool for knowledge extraction. However, with the gradual shift in language structure and vocabulary, NERs are plagued with distribution shifts, making them redundant or not as profitable without re-training. Re-training NERs based on Large Language Models (LLMs) from scratch over newly acquired data poses economic disadvantages. In contrast, re-training only with newly acquired data will result in Catastrophic Forgetting of previously acquired knowledge. Therefore, we propose NERDA-Con, a pipeline for training NERs with LLM bases by incorporating the concept of Elastic Weight Consolidation (EWC) into the NER fine-tuning NERDA pipeline. As we believe our work has implications to be utilized in the pipeline of continual learning and NER, we open-source our code as well as provide the fine-tuning library of the same name NERDA-Con at this https URL and this https URL.
Supriti Vijay, Aman Priyanshu
4
Python
7/3/2022 Analyzing Encoded Concepts in Transformer Language Models
We propose a novel framework ConceptX, to analyze how latent concepts are encoded in representations learned within pre-trained language models. It uses clustering to discover the encoded concepts and explains them by aligning with a large set of human-defined concepts. Our analysis on seven transformer language models reveal interesting insights: i) the latent space within the learned representations overlap with different linguistic concepts to a varying degree, ii) the lower layers in the model are dominated by lexical concepts (e.g., affixation), whereas the core-linguistic concepts (e.g., morphological or syntactic relations) are better represented in the middle and higher layers, iii) some encoded concepts are multi-faceted and cannot be adequately explained using the existing human-defined concepts.
Hassan Sajjad, Nadir Durrani, Fahim Dalvi, Firoj Alam, Abdul Rafae Khan, Jia Xu
3
Python
7/3/2022 On the Robustness of Dialogue History Representation in Conversational Question Answering: A Comprehensive Study and a New Prompt-based Method
Most works on modeling the conversation history in Conversational Question Answering (CQA) report a single main result on a common CQA benchmark. While existing models show impressive results on CQA leaderboards, it remains unclear whether they are robust to shifts in setting (sometimes to more realistic ones), training data size (e.g. from large to small sets) and domain. In this work, we design and conduct the first large-scale robustness study of history modeling approaches for CQA. We find that high benchmark scores do not necessarily translate to strong robustness, and that various methods can perform extremely differently under different settings. Equipped with the insights from our study, we design a novel prompt-based history modeling approach, and demonstrate its strong robustness across various settings. Our approach is inspired by existing methods that highlight historic answers in the passage. However, instead of highlighting by modifying the passage token embeddings, we add textual prompts directly in the passage text. Our approach is simple, easy-to-plug into practically any model, and highly effective, thus we recommend it as a starting point for future model developers. We also hope that our study and insights will raise awareness to the importance of robustness-focused evaluation, in addition to obtaining high leaderboard scores, leading to better CQA systems.
Zorik Gekhman, Nadav Oved, Orgad Keller, Idan Szpektor, Roi Reichart
3
7/3/2022 Contextual embedding and model weighting by fusing domain knowledge on Biomedical Question Answering
Biomedical Question Answering aims to obtain an answer to the given question from the biomedical domain. Due to its high requirement of biomedical domain knowledge, it is difficult for the model to learn domain knowledge from limited training data. We propose a contextual embedding method that combines open-domain QA model \aoa and \biobert model pre-trained on biomedical domain data. We adopt unsupervised pre-training on large biomedical corpus and supervised fine-tuning on biomedical question answering dataset. Additionally, we adopt an MLP-based model weighting layer to automatically exploit the advantages of two models to provide the correct answer. The public dataset \biomrc constructed from PubMed corpus is used to evaluate our method. Experimental results show that our model outperforms state-of-the-art system by a large margin.
Yuxuan Lu, Jingya Yan, Zhixuan Qi, Zhongzheng Ge, Yongping Du
2
Python
7/3/2022 On the Impact of Noises in Crowd-Sourced Data for Speech Translation
Training speech translation (ST) models requires large and high-quality datasets. MuST-C is one of the most widely used ST benchmark datasets. It contains around 400 hours of speech-transcript-translation data for each of the eight translation directions. This dataset passes several quality-control filters during creation. However, we find that MuST-C still suffers from three major quality issues: audio-text misalignment, inaccurate translation, and unnecessary speaker's name. What are the impacts of these data quality issues for model development and evaluation? In this paper, we propose an automatic method to fix or filter the above quality issues, using English-German (En-De) translation as an example. Our experiments show that ST models perform better on clean test sets, and the rank of proposed models remains consistent across different test sets. Besides, simply removing misaligned data points from the training set does not lead to a better ST model.
Siqi Ouyang, Rong Ye, Lei Li
2
Python
7/3/2022 Transformer with Tree-order Encoding for Neural Program Generation
While a considerable amount of semantic parsing approaches have employed RNN architectures for code generation tasks, there have been only few attempts to investigate the applicability of Transformers for this task. Including hierarchical information of the underlying programming language syntax has proven to be effective for code generation. Since the positional encoding of the Transformer can only represent positions in a flat sequence, we have extended the encoding scheme to allow the attention mechanism to also attend over hierarchical positions in the input. Furthermore, we have realized a decoder based on a restrictive grammar graph model to improve the generation accuracy and ensure the well-formedness of the generated code. While we did not surpass the state of the art, our findings suggest that employing a tree-based positional encoding in combination with a shared natural-language subword vocabulary improves generation performance over sequential positional encodings.
Klaudia-Doris Thellmann, Bernhard Stadler, Ricardo Usbeck, Jens Lehmann
2
Python
7/3/2022 Protoformer: Embedding Prototypes for Transformers
Transformers have been widely applied in text classification. Unfortunately, real-world data contain anomalies and noisy labels that cause challenges for state-of-art Transformers. This paper proposes Protoformer, a novel self-learning framework for Transformers that can leverage problematic samples for text classification. Protoformer features a selection mechanism for embedding samples that allows us to efficiently extract and utilize anomalies prototypes and difficult class prototypes. We demonstrated such capabilities on datasets with diverse textual structures (e.g., Twitter, IMDB, ArXiv). We also applied the framework to several models. The results indicate that Protoformer can improve current Transformers in various empirical settings.
Ashkan Farhangi, Ning Sui, Nan Hua, Haiyan Bai, Arthur Huang, Zhishan Guo
1
Python
7/3/2022 Do Trajectories Encode Verb Meaning?
Distributional models learn representations of words from text, but are criticized for their lack of grounding, or the linking of text to the non-linguistic world. Grounded language models have had success in learning to connect concrete categories like nouns and adjectives to the world via images and videos, but can struggle to isolate the meaning of the verbs themselves from the context in which they typically occur. In this paper, we investigate the extent to which trajectories (i.e. the position and rotation of objects over time) naturally encode verb semantics. We build a procedurally generated agent-object-interaction dataset, obtain human annotations for the verbs that occur in this data, and compare several methods for representation learning given the trajectories. We find that trajectories correlate as-is with some verbs (e.g., fall), and that additional abstraction via self-supervised pretraining can further capture nuanced differences in verb meaning (e.g., roll vs. slide).
Dylan Ebert, Chen Sun, Ellie Pavlick
1
C#
7/3/2022 Data Augmentation for Dementia Detection in Spoken Language
Dementia is a growing problem as our society ages, and detection methods are often invasive and expensive. Recent deep-learning techniques can offer a faster diagnosis and have shown promising results. However, they require large amounts of labelled data which is not easily available for the task of dementia detection. One effective solution to sparse data problems is data augmentation, though the exact methods need to be selected carefully. To date, there has been no empirical study of data augmentation on Alzheimer's disease (AD) datasets for NLP and speech processing. In this work, we investigate data augmentation techniques for the task of AD detection and perform an empirical evaluation of the different approaches on two kinds of models for both the text and audio domains. We use a transformer-based model for both domains, and SVM and Random Forest models for the text and audio domains, respectively. We generate additional samples using traditional as well as deep learning based methods and show that data augmentation improves performance for both the text- and audio-based models and that such results are comparable to state-of-the-art results on the popular ADReSS set, with carefully crafted architectures and features.
Anna Hledikov, Dominika Woszczyk, Alican Acman, Soteris Demetriou, Bjorn Schuller
1
Python
7/3/2022 Distilling a Pretrained Language Model to a Multilingual ASR Model
Multilingual speech data often suffer from long-tailed language distribution, resulting in performance degradation. However, multilingual text data is much easier to obtain, yielding a more useful general language model. Hence, we are motivated to distill the rich knowledge embedded inside a well-trained teacher text model to the student speech model. We propose a novel method called the Distilling a Language model to a Speech model (Distill-L2S), which aligns the latent representations of two different modalities. The subtle differences are handled by the shrinking mechanism, nearest-neighbor interpolation, and a learnable linear projection layer. We demonstrate the effectiveness of our distillation method by applying it to the multilingual automatic speech recognition (ASR) task. We distill the transformer-based cross-lingual language model (InfoXLM) while fine-tuning the large-scale multilingual ASR model (XLSR-wav2vec 2.0) for each language. We show the superiority of our method on 20 low-resource languages of the CommonVoice dataset with less than 100 hours of speech data.
Kwanghee Choi, Hyung-Min Park
1
Python
7/3/2022 CC-Riddle: A Question Answering Dataset of Chinese Character Riddles
Chinese character riddle is a challenging riddle game which takes a single character as the solution. The riddle describes the pronunciation, shape and meaning of the solution character with rhetoric techniques. In this paper, we propose a Chinese character riddle dataset covering the majority of common simplified Chinese characters by crawling riddles from the Web and generating brand new ones. In the generation stage, we provide the Chinese phonetic alphabet, decomposition and explanation of the solution character for the generation model and get multiple riddle descriptions for each tested character. Then the generated riddles are manually filtered and the final dataset, CC-Riddle is composed of both human-written riddles and filtered generated riddles. Furthermore, we build a character riddle QA system based on our dataset and find that the existing models struggle to solve such tricky questions. CC-Riddle is now publicly available.
Fan Xu, Yunxiang Zhang, Xiaojun Wan
1
7/3/2022 BertNet: Harvesting Knowledge Graphs from Pretrained Language Models
Symbolic knowledge graphs (KGs) have been constructed either by expensive human crowdsourcing or with domain-specific complex information extraction pipelines. The emerging large pretrained language models (LMs), such as Bert, have shown to implicitly encode massive knowledge which can be queried with properly designed prompts. However, compared to the explicit KGs, the implict knowledge in the black-box LMs is often difficult to access or edit and lacks explainability. In this work, we aim at harvesting symbolic KGs from the LMs, a new framework for automatic KG construction empowered by the neural LMs' flexibility and scalability. Compared to prior works that often rely on large human annotated data or existing massive KGs, our approach requires only the minimal definition of relations as inputs, and hence is suitable for extracting knowledge of rich new relations not available before.The approach automatically generates diverse prompts, and performs efficient knowledge search within a given LM for consistent and extensive outputs. The harvested knowledge with our approach is substantially more accurate than with previous methods, as shown in both automatic and human evaluation. As a result, we derive from diverse LMs a family of new KGs (e.g., BertNet and RoBERTaNet) that contain a richer set of commonsense relations, including complex ones (e.g., "A is capable of but not good at B"), than the human-annotated KGs (e.g., ConceptNet). Besides, the resulting KGs also serve as a vehicle to interpret the respective source LMs, leading to new insights into the varying knowledge capability of different LMs.
Shibo Hao, Bowen Tan, Kaiwen Tang, Hengzhe Zhang, Eric P Xing, Zhiting Hu
1
Python
7/3/2022 DialogID: A Dialogic Instruction Dataset for Improving Teaching Effectiveness in Online Environments
Online dialogic instructions are a set of pedagogical instructions used in real-world online educational contexts to motivate students, help understand learning materials, and build effective study habits. In spite of the popularity and advantages of online learning, the education technology and educational data mining communities still suffer from the lack of large-scale, high-quality, and well-annotated teaching instruction datasets to study computational approaches to automatically detect online dialogic instructions and further improve the online teaching effectiveness. Therefore, in this paper, we present a dataset of online dialogic instruction detection, \textsc{DialogID}, which contains 30,431 effective dialogic instructions. These teaching instructions are well annotated into 8 categories. Furthermore, we utilize the prevalent pre-trained language models (PLMs) and propose a simple yet effective adversarial training learning paradigm to improve the quality and generalization of dialogic instruction detection. Extensive experiments demonstrate that our approach outperforms a wide range of baseline methods. The data and our code are available for research purposes from: \url{this https URL}.
Jiahao Chen, Shuyan Huang, Zitao Liu, Weiqi Luo
0
Python
7/3/2022 SC-Ques: A Sentence Completion Question Dataset for English as a Second Language Learners
Sentence completion (SC) questions present a sentence with one or more blanks that need to be filled in, three to five possible words or phrases as options. SC questions are widely used for students learning English as a Second Language (ESL). In this paper, we present a large-scale SC dataset, \textsc{SC-Ques}, which is made up of 292,517 ESL SC questions from real-world standardized English examinations. Furthermore, we build a comprehensive benchmark of automatically solving the SC questions by training the large-scale pre-trained language models on the proposed \textsc{SC-Ques} dataset. We conduct detailed analysis of the baseline models performance, limitations and trade-offs. The data and our code are available for research purposes from: \url{this https URL}.
Qiongqiong Liu, Shuyan Huang, Zitao Liu, Weiqi Luo
0
Python
7/3/2022 Two-Stage Classifier for COVID-19 Misinformation Detection Using BERT: a Study on Indonesian Tweets
The COVID-19 pandemic has caused globally significant impacts since the beginning of 2020. This brought a lot of confusion to society, especially due to the spread of misinformation through social media. Although there were already several studies related to the detection of misinformation in social media data, most studies focused on the English dataset. Research on COVID-19 misinformation detection in Indonesia is still scarce. Therefore, through this research, we collect and annotate datasets for Indonesian and build prediction models for detecting COVID-19 misinformation by considering the tweet's relevance. The dataset construction is carried out by a team of annotators who labeled the relevance and misinformation of the tweet data. In this study, we propose the two-stage classifier model using IndoBERT pre-trained language model for the Tweet misinformation detection task. We also experiment with several other baseline models for text classification. The experimental results show that the combination of the BERT sequence classifier for relevance prediction and Bi-LSTM for misinformation detection outperformed other machine learning models with an accuracy of 87.02%. Overall, the BERT utilization contributes to the higher performance of most prediction models. We release a high-quality COVID-19 misinformation Tweet corpus in the Indonesian language, indicated by the high inter-annotator agreement.
Douglas Raevan Faisal, Rahmad Mahendra
0
7/3/2022 Evaluation of Semantic Answer Similarity Metrics
There are several issues with the existing general machine translation or natural language generation evaluation metrics, and question-answering (QA) systems are indifferent in that context. To build robust QA systems, we need the ability to have equivalently robust evaluation systems to verify whether model predictions to questions are similar to ground-truth annotations. The ability to compare similarity based on semantics as opposed to pure string overlap is important to compare models fairly and to indicate more realistic acceptance criteria in real-life applications. We build upon the first to our knowledge paper that uses transformer-based model metrics to assess semantic answer similarity and achieve higher correlations to human judgement in the case of no lexical overlap. We propose cross-encoder augmented bi-encoder and BERTScore models for semantic answer similarity, trained on a new dataset consisting of name pairs of US-American public figures. As far as we are concerned, we provide the first dataset of co-referent name string pairs along with their similarities, which can be used for training. Machine Learning & Applications 4th International Conference on Machine Learning & Applications (CMLA 2022) June 25~26, 2022, Copenhagen, Denmark Volume Editors : David C. Wyld, Dhinaharan Nagamalai (Eds) ISBN : 978-1-925953-69-5
Farida Mustafazade, Peter F. Ebbinghaus
0
Jupyter Notebook
7/3/2022 Efficient Entity Candidate Generation for Low-Resource Languages
Candidate generation is a crucial module in entity linking. It also plays a key role in multiple NLP tasks that have been proven to beneficially leverage knowledge bases. Nevertheless, it has often been overlooked in the monolingual English entity linking literature, as naive approaches obtain very good performance. Unfortunately, the existing approaches for English cannot be successfully transferred to poorly resourced languages. This paper constitutes an in-depth analysis of the candidate generation problem in the context of cross-lingual entity linking with a focus on low-resource languages. Among other contributions, we point out limitations in the evaluation conducted in previous works. We introduce a characterization of queries into types based on their difficulty, which improves the interpretability of the performance of different methods. We also propose a light-weight and simple solution based on the construction of indexes whose design is motivated by more complex transfer learning based neural approaches. A thorough empirical analysis on 9 real-world datasets under 2 evaluation settings shows that our simple solution outperforms the state-of-the-art approach in terms of both quality and efficiency for almost all datasets and query types.
Alberto Garcia-Duran, Akhil Arora, Robert West
0
Python
7/3/2022 GERNERMED++: Transfer Learning in German Medical NLP
We present a statistical model for German medical natural language processing trained for named entity recognition (NER) as an open, publicly available model. The work serves as a refined successor to our first GERNERMED model which is substantially outperformed by our work. We demonstrate the effectiveness of combining multiple techniques in order to achieve strong results in entity recognition performance by the means of transfer-learning on pretrained deep language models (LM), word-alignment and neural machine translation. Due to the sparse situation on open, public medical entity recognition models for German texts, this work offers benefits to the German research community on medical NLP as a baseline model. Since our model is based on public English data, its weights are provided without legal restrictions on usage and distribution. The sample code and the statistical model is available at: this https URL
Johann Frei, Ludwig Frei-Stuber, Frank Kramer
0
Python
7/3/2022 Unsupervised Sentence Simplification via Dependency Parsing
Text simplification is the task of rewriting a text so that it is readable and easily understood. In this paper, we propose a simple yet novel unsupervised sentence simplification system that harnesses parsing structures together with sentence embeddings to produce linguistically effective simplifications. This means our model is capable of introducing substantial modifications to simplify a sentence while maintaining its original semantics and adequate fluency. We establish the unsupervised state-of-the-art at 39.13 SARI on TurkCorpus set and perform competitively against supervised baselines on various quality metrics. Furthermore, we demonstrate our framework's extensibility to other languages via a proof-of-concept on Vietnamese data. Code for reproduction is published at \url{this https URL}.
Vy Vo, Weiqing Wang, Wray Buntine
0
Roff
7/3/2022 Towards a Data-Driven Requirements Engineering Approach: Automatic Analysis of User Reviews
We are concerned by Data Driven Requirements Engineering, and in particular the consideration of user's reviews. These online reviews are a rich source of information for extracting new needs and improvement requests. In this work, we provide an automated analysis using CamemBERT, which is a state-of-the-art language model in French. We created a multi-label classification dataset of 6000 user reviews from three applications in the Health & Fitness field. The results are encouraging and suggest that it's possible to identify automatically the reviews concerning requests for new features. Dataset is available at: this https URL.
Jialiang Wei, Anne-Lise Courbis, Thomas Lambolais, Binbin Xu, Pierre Louis Bernard, Gerard Dray
0
7/3/2022 Towards Lexical Gender Inference: A Scalable Methodology using Online Databases
This paper presents a new method for automatically detecting words with lexical gender in large-scale language datasets. Currently, the evaluation of gender bias in natural language processing relies on manually compiled lexicons of gendered expressions, such as pronouns ('he', 'she', etc.) and nouns with lexical gender ('mother', 'boyfriend', 'policewoman', etc.). However, manual compilation of such lists can lead to static information if they are not periodically updated and often involve value judgments by individual annotators and researchers. Moreover, terms not included in the list fall out of the range of analysis. To address these issues, we devised a scalable, dictionary-based method to automatically detect lexical gender that can provide a dynamic, up-to-date analysis with high coverage. Our approach reaches over 80% accuracy in determining the lexical gender of nouns retrieved randomly from a Wikipedia sample and when testing on a list of gendered words used in previous research.
Marion Bartl, Susan Leavy
0
Python
7/3/2022 Language Models as Knowledge Embeddings
Knowledge embeddings (KE) represent a knowledge graph (KG) by embedding entities and relations into continuous vector spaces. Existing methods are mainly structure-based or description-based. Structure-based methods learn representations that preserve the inherent structure of KGs. They cannot well represent abundant long-tail entities in real-world KGs with limited structural information. Description-based methods leverage textual information and language models. Prior approaches in this direction barely outperform structure-based ones, and suffer from problems like expensive negative sampling and restrictive description demand. In this paper, we propose LMKE, which adopts Language Models to derive Knowledge Embeddings, aiming at both enriching representations of long-tail entities and solving problems of prior description-based methods. We formulate description-based KE learning with a contrastive learning framework to improve efficiency in training and evaluation. Experimental results show that LMKE achieves state-of-the-art performance on KE benchmarks of link prediction and triple classification, especially for long-tail entities.
Xintao Wang, Qianyu He, Jiaqing Liang, Yanghua Xiao
0
Python
7/3/2022 Using Twitter Data to Understand Public Perceptions of Approved versus Off-label Use for COVID-19-related Medications
Understanding public discourse on emergency use of unproven therapeutics is essential to monitor safe use and combat misinformation. We developed a natural language processing (NLP)-based pipeline to understand public perceptions of and stances on COVID-19-related drugs on Twitter across time. This retrospective study included 609,189 US-based tweets between January 29th, 2020 and November 30th, 2021 on four drugs that gained wide public attention during the COVID-19 pandemic: 1) Hydroxychloroquine and Ivermectin, drug therapies with anecdotal evidence; and 2) Molnupiravir and Remdesivir, FDA-approved treatment options for eligible patients. Time-trend analysis was used to understand the popularity and related events. Content and demographic analyses were conducted to explore potential rationales of people's stances on each drug. Time-trend analysis revealed that Hydroxychloroquine and Ivermectin received much more discussion than Molnupiravir and Remdesivir, particularly during COVID-19 surges. Hydroxychloroquine and Ivermectin were highly politicized, related to conspiracy theories, hearsay, celebrity effects, etc. The distribution of stance between the two major US political parties was significantly different (p<0.001); Republicans were much more likely to support Hydroxychloroquine (+55%) and Ivermectin (+30%) than Democrats. People with healthcare backgrounds tended to oppose Hydroxychloroquine (+7%) more than the general population; in contrast, the general population was more likely to support Ivermectin (+14%). We make all the data, code, and models available at this https URL.
Yining Hua, Hang Jiang, Shixu Lin, Jie Yang, Joseph M. Plasek, David W. Bates, Li Zhou
0
Jupyter Notebook
7/3/2022 Masked Part-Of-Speech Model: Does Modeling Long Context Help Unsupervised POS-tagging?
Previous Part-Of-Speech (POS) induction models usually assume certain independence assumptions (e.g., Markov, unidirectional, local dependency) that do not hold in real languages. For example, the subject-verb agreement can be both long-term and bidirectional. To facilitate flexible dependency modeling, we propose a Masked Part-of-Speech Model (MPoSM), inspired by the recent success of Masked Language Models (MLM). MPoSM can model arbitrary tag dependency and perform POS induction through the objective of masked POS reconstruction. We achieve competitive results on both the English Penn WSJ dataset as well as the universal treebank containing 10 diverse languages. Though modeling the long-term dependency should ideally help this task, our ablation study shows mixed trends in different languages. To better understand this phenomenon, we design a novel synthetic experiment that can specifically diagnose the model's ability to learn tag agreement. Surprisingly, we find that even strong baselines fail to solve this problem consistently in a very simplified setting: the agreement between adjacent words. Nonetheless, MPoSM achieves overall better performance. Lastly, we conduct a detailed error analysis to shed light on other remaining challenges. Our code is available at this https URL
Xiang Zhou, Shiyue Zhang, Mohit Bansal
0
Python
7/3/2022 Do You Know My Emotion? Emotion-Aware Strategy Recognition towards a Persuasive Dialogue System
Persuasive strategy recognition task requires the system to recognize the adopted strategy of the persuader according to the conversation. However, previous methods mainly focus on the contextual information, little is known about incorporating the psychological feedback, i.e. emotion of the persuadee, to predict the strategy. In this paper, we propose a Cross-channel Feedback memOry Network (CFO-Net) to leverage the emotional feedback to iteratively measure the potential benefits of strategies and incorporate them into the contextual-aware dialogue information. Specifically, CFO-Net designs a feedback memory module, including strategy pool and feedback pool, to obtain emotion-aware strategy representation. The strategy pool aims to store historical strategies and the feedback pool is to obtain updated strategy weight based on feedback emotional information. Furthermore, a cross-channel fusion predictor is developed to make a mutual interaction between the emotion-aware strategy representation and the contextual-aware dialogue information for strategy recognition. Experimental results on \textsc{PersuasionForGood} confirm that the proposed model CFO-Net is effective to improve the performance on M-F1 from 61.74 to 65.41.
Wei Peng, Yue Hu, Luxi Xing, Yuqiang Xie, Yajing Sun
0
7/3/2022 Placing (Historical) Facts on a Timeline: A Classification cum Coref Resolution Approach
A timeline provides one of the most effective ways to visualize the important historical facts that occurred over a period of time, presenting the insights that may not be so apparent from reading the equivalent information in textual form. By leveraging generative adversarial learning for important sentence classification and by assimilating knowledge based tags for improving the performance of event coreference resolution we introduce a two staged system for event timeline generation from multiple (historical) text documents. We demonstrate our results on two manually annotated historical text documents. Our results can be extremely helpful for historians, in advancing research in history and in understanding the socio-political landscape of a country as reflected in the writings of famous personas.
Sayantan Adak, Altaf Ahmad, Aditya Basu, Animesh Mukherjee
0
Jupyter Notebook
7/3/2022 Hybrid Ensemble for Fake News Detection: An attempt
Fake News Detection has been a challenging problem in the field of Machine Learning. Researchers have approached it via several techniques using old Statistical Classification models and modern Deep Learning. Today, with the growing amount of data, developments in the field of NLP and ML, and an increase in the computation power at disposal, there are infinite permutations and combinations to approach this problem from a different perspective. In this paper, we try different methods to tackle Fake News, and try to build, and propose the possibilities of a Hybrid Ensemble combining the classical Machine Learning techniques with the modern Deep Learning Approaches
Lovedeep Singh
0
Jupyter Notebook
7/3/2022 QAGAN: Adversarial Approach To Learning Domain Invariant Language Features
Training models that are robust to data domain shift has gained an increasing interest both in academia and industry. Question-Answering language models, being one of the typical problem in Natural Language Processing (NLP) research, has received much success with the advent of large transformer models. However, existing approaches mostly work under the assumption that data is drawn from same distribution during training and testing which is unrealistic and non-scalable in the wild. In this paper, we explore adversarial training approach towards learning domain-invariant features so that language models can generalize well to out-of-domain datasets. We also inspect various other ways to boost our model performance including data augmentation by paraphrasing sentences, conditioning end of answer span prediction on the start word, and carefully designed annealing function. Our initial results show that in combination with these methods, we are able to achieve $15.2\%$ improvement in EM score and $5.6\%$ boost in F1 score on out-of-domain validation dataset over the baseline. We also dissect our model outputs and visualize the model hidden-states by projecting them onto a lower-dimensional space, and discover that our specific adversarial training approach indeed encourages the model to learn domain invariant embedding and bring them closer in the multi-dimensional space.
Shubham Shrivastava, Kaiyue Wang
0
Jupyter Notebook
7/3/2022 Finstreder: Simple and fast Spoken Language Understanding with Finite State Transducers using modern Speech-to-Text models
In Spoken Language Understanding (SLU) the task is to extract important information from audio commands, like the intent of what a user wants the system to do and special entities like locations or numbers. This paper presents a simple method for embedding intents and entities into Finite State Transducers, and, in combination with a pretrained general-purpose Speech-to-Text model, allows building SLU-models without any additional training. Building those models is very fast and only takes a few seconds. It is also completely language independent. With a comparison on different benchmarks it is shown that this method can outperform multiple other, more resource demanding SLU approaches.
Daniel Bermuth, Alexander Poeppel, Wolfgang Reif
7/3/2022 TEVR: Improving Speech Recognition by Token Entropy Variance Reduction
This paper presents TEVR, a speech recognition model designed to minimize the variation in token entropy w.r.t. to the language model. This takes advantage of the fact that if the language model will reliably and accurately predict a token anyway, then the acoustic model doesn't need to be accurate in recognizing it. We train German ASR models with 900 million parameters and show that on CommonVoice German, TEVR scores a very competitive 3.64% word error rate, which outperforms the best reported results by a relative 16.89% reduction in word error rate. We hope that releasing our fully trained speech recognition pipeline to the community will lead to privacy-preserving offline virtual assistants in the future.
Hajo Nils Krabbenhoft, Erhardt Barth
7/3/2022 MineDojo: Building Open-Ended Embodied Agents with Internet-Scale Knowledge
Autonomous agents have made great strides in specialist domains like Atari games and Go. However, they typically learn tabula rasa in isolated environments with limited and manually conceived objectives, thus failing to generalize across a wide spectrum of tasks and capabilities. Inspired by how humans continually learn and adapt in the open world, we advocate a trinity of ingredients for building generalist agents: 1) an environment that supports a multitude of tasks and goals, 2) a large-scale database of multimodal knowledge, and 3) a flexible and scalable agent architecture. We introduce MineDojo, a new framework built on the popular Minecraft game that features a simulation suite with thousands of diverse open-ended tasks and an internet-scale knowledge base with Minecraft videos, tutorials, wiki pages, and forum discussions. Using MineDojo's data, we propose a novel agent learning algorithm that leverages large pre-trained video-language models as a learned reward function. Our agent is able to solve a variety of open-ended tasks specified in free-form language without any manually designed dense shaping reward. We open-source the simulation suite and knowledge bases (this https URL) to promote research towards the goal of generally capable embodied agents.
Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang, De-An Huang, Yuke Zhu, Anima Anandkumar
241
Java
7/3/2022 reStructured Pre-training
In this work, we try to decipher the internal connection of NLP technology development in the past decades, searching for essence, which rewards us with a (potential) new learning paradigm for NLP tasks, dubbed as reStructured Pre-training (RST). In such a paradigm, the role of data will be re-emphasized, and model pre-training and fine-tuning of downstream tasks are viewed as a process of data storing and accessing. Based on that, we operationalize the simple principle that a good storage mechanism should not only have the ability to cache a large amount of data but also consider the ease of access. We achieve this by pre-training models over restructured data that consist of a variety of valuable information instead of raw data after overcoming several engineering challenges. Experimentally, RST models not only surpass strong competitors (e.g., T0) on 52/55 popular datasets from a variety of NLP tasks, but also achieve superior performance in National College Entrance Examination - English (Gaokao-English),the most authoritative examination in China. Specifically, the proposed system Qin achieves 40 points higher than the average scores made by students and 15 points higher than GPT3 with 1/16 parameters. In particular, Qin gets a high score of 138.5 (the full mark is 150) in the 2018 English exam (national paper III). We have released the Gaokao Benchmark with an online submission platform. In addition, we test our model in the 2022 College Entrance Examination English that happened a few days ago (2022.06.08), and it gets a total score of 134 (v.s. GPT3's 108).
Weizhe Yuan, Pengfei Liu
35
7/3/2022 BenchCLAMP: A Benchmark for Evaluating Language Models on Semantic Parsing
We introduce BenchCLAMP, a Benchmark to evaluate Constrained LAnguage Model Parsing, which produces semantic outputs based on the analysis of input text through constrained decoding of a prompted or fine-tuned language model. Developers of pretrained language models currently benchmark on classification, span extraction and free-text generation tasks. Semantic parsing is neglected in language model evaluation because of the complexity of handling task-specific architectures and representations. Recent work has shown that generation from a prompted or fine-tuned language model can perform well at semantic parsing when the output is constrained to be a valid semantic representation. BenchCLAMP includes context-free grammars for six semantic parsing datasets with varied output meaning representations, as well as a constrained decoding interface to generate outputs covered by these grammars. We provide low, medium, and high resource splits for each dataset, allowing accurate comparison of various language models under different data regimes. Our benchmark supports both prompt-based learning as well as fine-tuning, and provides an easy-to-use toolkit for language model developers to evaluate on semantic parsing.
Subhro Roy, Sam Thomson, Tongfei Chen, Richard Shin, Adam Pauls, Jason Eisner, Benjamin Van Durme
29
Python
7/3/2022 Square One Bias in NLP: Towards a Multi-Dimensional Exploration of the Research Manifold
The prototypical NLP experiment trains a standard architecture on labeled English data and optimizes for accuracy, without accounting for other dimensions such as fairness, interpretability, or computational efficiency. We show through a manual classification of recent NLP research papers that this is indeed the case and refer to it as the square one experimental setup. We observe that NLP research often goes beyond the square one setup, e.g, focusing not only on accuracy, but also on fairness or interpretability, but typically only along a single dimension. Most work targeting multilinguality, for example, considers only accuracy; most work on fairness or interpretability considers only English; and so on. We show this through manual classification of recent NLP research papers and ACL Test-of-Time award recipients. Such one-dimensionality of most research means we are only exploring a fraction of the NLP research search space. We provide historical and recent examples of how the square one bias has led researchers to draw false conclusions or make unwise choices, point to promising yet unexplored directions on the research manifold, and make practical recommendations to enable more multi-dimensional research. We open-source the results of our annotations to enable further analysis at this https URL
Sebastian Ruder, Ivan Vulic, Anders Sogaard
25
7/3/2022 CLiMB: A Continual Learning Benchmark for Vision-and-Language Tasks
Current state-of-the-art vision-and-language models are evaluated on tasks either individually or in a multi-task setting, overlooking the challenges of continually learning (CL) tasks as they arrive. Existing CL benchmarks have facilitated research on task adaptation and mitigating "catastrophic forgetting", but are limited to vision-only and language-only tasks. We present CLiMB, a benchmark to study the challenge of learning multimodal tasks in a CL setting, and to systematically evaluate how upstream continual learning can rapidly generalize to new multimodal and unimodal tasks. CLiMB includes implementations of several CL algorithms and a modified Vision-Language Transformer (ViLT) model that can be deployed on both multimodal and unimodal tasks. We find that common CL methods can help mitigate forgetting during multimodal task learning, but do not enable cross-task knowledge transfer. We envision that CLiMB will facilitate research on a new class of CL algorithms for this challenging multimodal setting.
Tejas Srinivasan, Ting-Yun Chang, Leticia Leonor Pinto Alva, Georgios Chochlakis, Mohammad Rostami, Jesse Thomason
12
Python
7/3/2022 Towards Unified Conversational Recommender Systems via Knowledge-Enhanced Prompt Learning
Conversational recommender systems (CRS) aim to proactively elicit user preference and recommend high-quality items through natural language conversations. Typically, a CRS consists of a recommendation module to predict preferred items for users and a conversation module to generate appropriate responses. To develop an effective CRS, it is essential to seamlessly integrate the two modules. Existing works either design semantic alignment strategies, or share knowledge resources and representations between the two modules. However, these approaches still rely on different architectures or techniques to develop the two modules, making it difficult for effective module integration. To address this problem, we propose a unified CRS model named UniCRS based on knowledge-enhanced prompt learning. Our approach unifies the recommendation and conversation subtasks into the prompt learning paradigm, and utilizes knowledge-enhanced prompts based on a fixed pre-trained language model (PLM) to fulfill both subtasks in a unified approach. In the prompt design, we include fused knowledge representations, task-specific soft tokens, and the dialogue context, which can provide sufficient contextual information to adapt the PLM for the CRS task. Besides, for the recommendation subtask, we also incorporate the generated response template as an important part of the prompt, to enhance the information interaction between the two subtasks. Extensive experiments on two public CRS datasets have demonstrated the effectiveness of our approach.
Xiaolei Wang, Kun Zhou, Ji-Rong Wen, Wayne Xin Zhao
8
Python
7/3/2022 Large Language Models Still Can't Plan (A Benchmark for LLMs on Planning and Reasoning about Change)
The recent advances in large language models (LLMs) have transformed the field of natural language processing (NLP). From GPT-3 to PaLM, the state-of-the-art performance on natural language tasks is being pushed forward with every new large language model. Along with natural language abilities, there has been a significant interest in understanding whether such models, trained on enormous amounts of data, exhibit reasoning capabilities. Hence there has been interest in developing benchmarks for various reasoning tasks and the preliminary results from testing LLMs over such benchmarks seem mostly positive. However, the current benchmarks are relatively simplistic and the performance over these benchmarks cannot be used as an evidence to support, many a times outlandish, claims being made about LLMs' reasoning capabilities. As of right now, these benchmarks only represent a very limited set of simple reasoning tasks and we need to look at more sophisticated reasoning problems if we are to measure the true limits of such LLM-based systems. With this motivation, we propose an extensible assessment framework to test the abilities of LLMs on a central aspect of human intelligence, which is reasoning about actions and change. We provide multiple test cases that are more involved than any of the previously established reasoning benchmarks and each test case evaluates a certain aspect of reasoning about actions and change. Initial evaluation results on the base version of GPT-3 (Davinci), showcase subpar performance on these benchmarks.
Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan, Subbarao Kambhampati
7
Python
7/3/2022 Domain-Adaptive Text Classification with Structured Knowledge from Unlabeled Data
Domain adaptive text classification is a challenging problem for the large-scale pretrained language models because they often require expensive additional labeled data to adapt to new domains. Existing works usually fails to leverage the implicit relationships among words across domains. In this paper, we propose a novel method, called Domain Adaptation with Structured Knowledge (DASK), to enhance domain adaptation by exploiting word-level semantic relationships. DASK first builds a knowledge graph to capture the relationship between pivot terms (domain-independent words) and non-pivot terms in the target domain. Then during training, DASK injects pivot-related knowledge graph information into source domain texts. For the downstream task, these knowledge-injected texts are fed into a BERT variant capable of processing knowledge-injected textual data. Thanks to the knowledge injection, our model learns domain-invariant features for non-pivots according to their relationships with pivots. DASK ensures the pivots to have domain-invariant behaviors by dynamically inferring via the polarity scores of candidate pivots during training with pseudo-labels. We validate DASK on a wide range of cross-domain sentiment classification tasks and observe up to 2.9% absolute performance improvement over baselines for 20 different domain pairs. Code will be made available at this https URL.
Tian Li, Xiang Chen, Zhen Dong, Weijiang Yu, Yijun Yan, Kurt Keutzer, Shanghang Zhang
6
7/3/2022 A Universal Adversarial Policy for Text Classifiers
Discovering the existence of universal adversarial perturbations had large theoretical and practical impacts on the field of adversarial learning. In the text domain, most universal studies focused on adversarial prefixes which are added to all texts. However, unlike the vision domain, adding the same perturbation to different inputs results in noticeably unnatural inputs. Therefore, we introduce a new universal adversarial setup - a universal adversarial policy, which has many advantages of other universal attacks but also results in valid texts - thus making it relevant in practice. We achieve this by learning a single search policy over a predefined set of semantics preserving text alterations, on many texts. This formulation is universal in that the policy is successful in finding adversarial examples on new texts efficiently. Our approach uses text perturbations which were extensively shown to produce natural attacks in the non-universal setup (specific synonym replacements). We suggest a strong baseline approach for this formulation which uses reinforcement learning. It's ability to generalise (from as few as 500 training texts) shows that universal adversarial patterns exist in the text domain as well.
Gallil Maimon, Lior Rokach
5
Jupyter Notebook
7/3/2022 CHEF: A Pilot Chinese Dataset for Evidence-Based Fact-Checking
The explosion of misinformation spreading in the media ecosystem urges for automated fact-checking. While misinformation spans both geographic and linguistic boundaries, most work in the field has focused on English. Datasets and tools available in other languages, such as Chinese, are limited. In order to bridge this gap, we construct CHEF, the first CHinese Evidence-based Fact-checking dataset of 10K real-world claims. The dataset covers multiple domains, ranging from politics to public health, and provides annotated evidence retrieved from the Internet. Further, we develop established baselines and a novel approach that is able to model the evidence retrieval as a latent variable, allowing jointly training with the veracity prediction model in an end-to-end fashion. Extensive experiments show that CHEF will provide a challenging testbed for the development of fact-checking systems designed to retrieve and reason over non-English claims.
Xuming Hu, Zhijiang Guo, Guanyu Wu, Aiwei Liu, Lijie Wen, Philip S. Yu
5
Python
7/3/2022 A Unified Evaluation of Textual Backdoor Learning: Frameworks and Benchmarks
Textual backdoor attacks are a kind of practical threat to NLP systems. By injecting a backdoor in the training phase, the adversary could control model predictions via predefined triggers. As various attack and defense models have been proposed, it is of great significance to perform rigorous evaluations. However, we highlight two issues in previous backdoor learning evaluations: (1) The differences between real-world scenarios (e.g. releasing poisoned datasets or models) are neglected, and we argue that each scenario has its own constraints and concerns, thus requires specific evaluation protocols; (2) The evaluation metrics only consider whether the attacks could flip the models' predictions on poisoned samples and retain performances on benign samples, but ignore that poisoned samples should also be stealthy and semantic-preserving. To address these issues, we categorize existing works into three practical scenarios in which attackers release datasets, pre-trained models, and fine-tuned models respectively, then discuss their unique evaluation methodologies. On metrics, to completely evaluate poisoned samples, we use grammar error increase and perplexity difference for stealthiness, along with text similarity for validity. After formalizing the frameworks, we develop an open-source toolkit OpenBackdoor to foster the implementations and evaluations of textual backdoor learning. With this toolkit, we perform extensive experiments to benchmark attack and defense models under the suggested paradigm. To facilitate the underexplored defenses against poisoned datasets, we further propose CUBE, a simple yet strong clustering-based defense baseline. We hope that our frameworks and benchmarks could serve as the cornerstones for future model development and evaluations.
Ganqu Cui, Lifan Yuan, Bingxiang He, Yangyi Chen, Zhiyuan Liu, Maosong Sun
5
Python
7/3/2022 Mining Error Templates for Grammatical Error Correction
Some grammatical error correction (GEC) systems incorporate hand-crafted rules and achieve positive results. However, manually defining rules is time-consuming and laborious. In view of this, we propose a method to mine error templates for GEC automatically. An error template is a regular expression aiming at identifying text errors. We use the web crawler to acquire such error templates from the Internet. For each template, we further select the corresponding corrective action by using the language model perplexity as a criterion. We have accumulated 1,119 error templates for Chinese GEC based on this method. Experimental results on the newly proposed CTC-2021 Chinese GEC benchmark show that combing our error templates can effectively improve the performance of a strong GEC system, especially on two error types with very little training data. Our error templates are available at \url{this https URL}.
Yue Zhang, Haochen Jiang, Zuyi Bao, Bo Zhang, Chen Li, Zhenghua Li
4
Python
7/3/2022 All the World's a (Hyper)Graph: A Data Drama
We introduce Hyperbard, a dataset of diverse relational data representations derived from Shakespeare's plays. Our representations range from simple graphs capturing character co-occurrence in single scenes to hypergraphs encoding complex communication settings and character contributions as hyperedges with edge-specific node weights. By making multiple intuitive representations readily available for experimentation, we facilitate rigorous representation robustness checks in graph learning, graph mining, and network analysis, highlighting the advantages and drawbacks of specific representations. Leveraging the data released in Hyperbard, we demonstrate that many solutions to popular graph mining problems are highly dependent on the representation choice, thus calling current graph curation practices into question. As an homage to our data source, and asserting that science can also be art, we present all our points in the form of a play.
Corinna Coupette, Jilles Vreeken, Bastian Rieck
4
Python
7/3/2022 SynWMD: Syntax-aware Word Mover's Distance for Sentence Similarity Evaluation
Word Mover's Distance (WMD) computes the distance between words and models text similarity with the moving cost between words in two text sequences. Yet, it does not offer good performance in sentence similarity evaluation since it does not incorporate word importance and fails to take inherent contextual and structural information in a sentence into account. An improved WMD method using the syntactic parse tree, called Syntax-aware Word Mover's Distance (SynWMD), is proposed to address these two shortcomings in this work. First, a weighted graph is built upon the word co-occurrence statistics extracted from the syntactic parse trees of sentences. The importance of each word is inferred from graph connectivities. Second, the local syntactic parsing structure of words is considered in computing the distance between words. To demonstrate the effectiveness of the proposed SynWMD, we conduct experiments on 6 textual semantic similarity (STS) datasets and 4 sentence classification datasets. Experimental results show that SynWMD achieves state-of-the-art performance on STS tasks. It also outperforms other WMD-based methods on sentence classification tasks.
Chengwei Wei, Bin Wang, C.-C. Jay Kuo
3
Python
7/3/2022 Bridging the Gap Between Indexing and Retrieval for Differentiable Search Index with Query Generation
The Differentiable Search Index (DSI) is a new, emerging paradigm for information retrieval. Unlike traditional retrieval architectures where index and retrieval are two different and separate components, DSI uses a single transformer model to perform both indexing and retrieval. In this paper, we identify and tackle an important issue of current DSI models: the data distribution mismatch that occurs between the DSI indexing and retrieval processes. Specifically, we argue that, at indexing, current DSI methods learn to build connections between long document texts and their identifies, but then at retrieval, short query texts are provided to DSI models to perform the retrieval of the document identifiers. This problem is further exacerbated when using DSI for cross-lingual retrieval, where document text and query text are in different languages. To address this fundamental problem of current DSI models we propose a simple yet effective indexing framework for DSI called DSI-QG. In DSI-QG, documents are represented by a number of relevant queries generated by a query generation model at indexing time. This allows DSI models to connect a document identifier to a set of query texts when indexing, hence mitigating data distribution mismatches present between the indexing and the retrieval phases. Empirical results on popular mono-lingual and cross-lingual passage retrieval benchmark datasets show that DSI-QG significantly outperforms the original DSI model.
Shengyao Zhuang, Houxing Ren, Linjun Shou, Jian Pei, Ming Gong, Guido Zuccon, Daxin Jiang
3
Python
7/3/2022 A Double-Graph Based Framework for Frame Semantic Parsing
Frame semantic parsing is a fundamental NLP task, which consists of three subtasks: frame identification, argument identification and role classification. Most previous studies tend to neglect relations between different subtasks and arguments and pay little attention to ontological frame knowledge defined in FrameNet. In this paper, we propose a Knowledge-guided Incremental semantic parser with Double-graph (KID). We first introduce Frame Knowledge Graph (FKG), a heterogeneous graph containing both frames and FEs (Frame Elements) built on the frame knowledge so that we can derive knowledge-enhanced representations for frames and FEs. Besides, we propose Frame Semantic Graph (FSG) to represent frame semantic structures extracted from the text with graph structures. In this way, we can transform frame semantic parsing into an incremental graph construction problem to strengthen interactions between subtasks and relations between arguments. Our experiments show that KID outperforms the previous state-of-the-art method by up to 1.7 F1-score on two FrameNet datasets. Our code is availavle at this https URL.
Ce Zheng, Xudong Chen, Runxin Xu, Baobao Chang
3
Python
7/3/2022 BN-HTRd: A Benchmark Dataset for Document Level Offline Bangla Handwritten Text Recognition (HTR) and Line Segmentation
We introduce a new dataset for offline Handwritten Text Recognition (HTR) from images of Bangla scripts comprising words, lines, and document-level annotations. The BN-HTRd dataset is based on the BBC Bangla News corpus, meant to act as ground truth texts. These texts were subsequently used to generate the annotations that were filled out by people with their handwriting. Our dataset includes 788 images of handwritten pages produced by approximately 150 different writers. It can be adopted as a basis for various handwriting classification tasks such as end-to-end document recognition, word-spotting, word or line segmentation, and so on. We also propose a scheme to segment Bangla handwritten document images into corresponding lines in an unsupervised manner. Our line segmentation approach takes care of the variability involved in different writing styles, accurately segmenting complex handwritten text lines of curvilinear nature. Along with a bunch of pre-processing and morphological operations, both Hough line and circle transforms were employed to distinguish different linear components. In order to arrange those components into their corresponding lines, we followed an unsupervised clustering approach. The average success rate of our segmentation technique is 81.57% in terms of FM metrics (similar to F-measure) with a mean Average Precision (mAP) of 0.547.
Md. Ataur Rahman, Nazifa Tabassum, Mitu Paul, Riya Pal, Mohammad Khairul Islam
3
Jupyter Notebook
7/3/2022 Prompt Injection: Parameterization of Fixed Inputs
Recent works have shown that attaching prompts to the input is effective at conditioning Language Models (LM) to perform specific tasks. However, prompts are always included in the input text during inference, thus incurring substantial computational and memory overhead. Also, there is currently no straightforward method of utilizing prompts that are longer than the maximum input length of the LMs without incurring additional costs during inference. We propose Prompt Injection (PI), a novel formulation of injecting the prompt into the parameters of an LM to be an efficient alternative to attaching fixed prompts to the input. We show that in scenarios with long fixed prompts, PI can be up to 280 times more efficient in terms of total FLOPs than previous approaches. We further explore methodologies for PI and show promising results in persona-dependent conversation, semantic parsing, and zero-shot learning with task instructions. Through these explorations, we show that PI can be a promising direction for conditioning language models, especially in scenarios with long and fixed prompts.
Eunbi Choi, Yongrae Jo, Joel Jang, Minjoon Seo
3
Python
7/3/2022 'John ate 5 apples' != 'John ate some apples': Self-Supervised Paraphrase Quality Detection for Algebraic Word Problems
This paper introduces the novel task of scoring paraphrases for Algebraic Word Problems (AWP) and presents a self-supervised method for doing so. In the current online pedagogical setting, paraphrasing these problems is helpful for academicians to generate multiple syntactically diverse questions for assessments. It also helps induce variation to ensure that the student has understood the problem instead of just memorizing it or using unfair means to solve it. The current state-of-the-art paraphrase generation models often cannot effectively paraphrase word problems, losing a critical piece of information (such as numbers or units) which renders the question unsolvable. There is a need for paraphrase scoring methods in the context of AWP to enable the training of good paraphrasers. Thus, we propose ParaQD, a self-supervised paraphrase quality detection method using novel data augmentations that can learn latent representations to separate a high-quality paraphrase of an algebraic question from a poor one by a wide margin. Through extensive experimentation, we demonstrate that our method outperforms existing state-of-the-art self-supervised methods by up to 32% while also demonstrating impressive zero-shot performance.
Rishabh Gupta, Venktesh V, Mukesh Mohania, Vikram Goyal
2
Jupyter Notebook
7/3/2022 Multi-LexSum: Real-World Summaries of Civil Rights Lawsuits at Multiple Granularities
With the advent of large language models, methods for abstractive summarization have made great strides, creating potential for use in applications to aid knowledge workers processing unwieldy document collections. One such setting is the Civil Rights Litigation Clearinghouse (CRLC) (this https URL),which posts information about large-scale civil rights lawsuits, serving lawyers, scholars, and the general public. Today, summarization in the CRLC requires extensive training of lawyers and law students who spend hours per case understanding multiple relevant documents in order to produce high-quality summaries of key events and outcomes. Motivated by this ongoing real-world summarization effort, we introduce Multi-LexSum, a collection of 9,280 expert-authored summaries drawn from ongoing CRLC writing. Multi-LexSum presents a challenging multi-document summarization task given the length of the source documents, often exceeding two hundred pages per case. Furthermore, Multi-LexSum is distinct from other datasets in its multiple target summaries, each at a different granularity (ranging from one-sentence "extreme" summaries to multi-paragraph narrations of over five hundred words). We present extensive analysis demonstrating that despite the high-quality summaries in the training data (adhering to strict content and style guidelines), state-of-the-art summarization models perform poorly on this task. We release Multi-LexSum for further research in summarization methods as well as to facilitate development of applications to assist in the CRLC's mission at this https URL.
Zejiang Shen, Kyle Lo, Lauren Yu, Nathan Dahlberg, Margo Schlanger, Doug Downey
2
Jupyter Notebook
7/3/2022 Connecting a French Dictionary from the Beginning of the 20th Century to Wikidata
The \textit{Petit Larousse illustr�} is a French dictionary first published in 1905. Its division in two main parts on language and on history and geography corresponds to a major milestone in French lexicography as well as a repository of general knowledge from this period. Although the value of many entries from 1905 remains intact, some descriptions now have a dimension that is more historical than contemporary. They are nonetheless significant to analyze and understand cultural representations from this time. A comparison with more recent information or a verification of these entries would require a tedious manual work. In this paper, we describe a new lexical resource, where we connected all the dictionary entries of the history and geography part to current data sources. For this, we linked each of these entries to a wikidata identifier. Using the wikidata links, we can automate more easily the identification, comparison, and verification of historically-situated representations. We give a few examples on how to process wikidata identifiers and we carried out a small analysis of the entities described in the dictionary to outline possible applications. The resource, i.e. the annotation of 20,245 dictionary entries with wikidata links, is available from GitHub (\url{this https URL})
Pierre Nugues
2
Jupyter Notebook
7/3/2022 ViralBERT: A User Focused BERT-Based Approach to Virality Prediction
Recently, Twitter has become the social network of choice for sharing and spreading information to a multitude of users through posts called 'tweets'. Users can easily re-share these posts to other users through 'retweets', which allow information to cascade to many more users, increasing its outreach. Clearly, being able to know the extent to which a post can be retweeted has great value in advertising, influencing and other such campaigns. In this paper we propose ViralBERT, which can be used to predict the virality of tweets using content- and user-based features. We employ a method of concatenating numerical features such as hashtags and follower numbers to tweet text, and utilise two BERT modules: one for semantic representation of the combined text and numerical features, and another module purely for sentiment analysis of text, as both the information within text and it's ability to elicit an emotional response play a part in retweet proneness. We collect a dataset of 330k tweets to train ViralBERT and validate the efficacy of our model using baselines from current studies in this field. Our experiments show that our approach outperforms these baselines, with a 13% increase in both F1 Score and Accuracy compared to the best performing baseline method. We then undergo an ablation study to investigate the importance of chosen features, finding that text sentiment and follower counts, and to a lesser extent mentions and following counts, are the strongest features for the model, and that hashtag counts are detrimental to the model.
Rikaz Rameez, Hossein A. Rahmani, Emine Yilmaz
2
Jupyter Notebook
7/3/2022 CS-UM6P at SemEval-2022 Task 6: Transformer-based Models for Intended Sarcasm Detection in English and Arabic
Sarcasm is a form of figurative language where the intended meaning of a sentence differs from its literal meaning. This poses a serious challenge to several Natural Language Processing (NLP) applications such as Sentiment Analysis, Opinion Mining, and Author Profiling. In this paper, we present our participating system to the intended sarcasm detection task in English and Arabic languages. Our system\footnote{The source code of our system is available at \url{this https URL}} consists of three deep learning-based models leveraging two existing pre-trained language models for Arabic and English. We have participated in all sub-tasks. Our official submissions achieve the best performance on sub-task A for Arabic language and rank second in sub-task B. For sub-task C, our system is ranked 7th and 11th on Arabic and English datasets, respectively.
Abdelkader El Mahdaouy, Abdellah El Mekki, Kabil Essefar, Abderrahman Skiredj, Ismail Berrada
2
Python
7/3/2022 Modeling Emergent Lexicon Formation with a Self-Reinforcing Stochastic Process
We introduce FiLex, a self-reinforcing stochastic process which models finite lexicons in emergent language experiments. The central property of FiLex is that it is a self-reinforcing process, parallel to the intuition that the more a word is used in a language, the more its use will continue. As a theoretical model, FiLex serves as a way to both explain and predict the behavior of the emergent language system. We empirically test FiLex's ability to capture the relationship between the emergent language's hyperparameters and the lexicon's Shannon entropy.
Brendon Boldt, David Mortensen
1
Python
7/3/2022 Multilingual HateCheck: Functional Tests for Multilingual Hate Speech Detection Models
Hate speech detection models are typically evaluated on held-out test sets. However, this risks painting an incomplete and potentially misleading picture of model performance because of increasingly well-documented systematic gaps and biases in hate speech datasets. To enable more targeted diagnostic insights, recent research has thus introduced functional tests for hate speech detection models. However, these tests currently only exist for English-language content, which means that they cannot support the development of more effective models in other languages spoken by billions across the world. To help address this issue, we introduce Multilingual HateCheck (MHC), a suite of functional tests for multilingual hate speech detection models. MHC covers 34 functionalities across ten languages, which is more languages than any other hate speech dataset. To illustrate MHC's utility, we train and test a high-performing multilingual hate speech detection model, and reveal critical model weaknesses for monolingual and cross-lingual applications.
Paul Rottger, Haitham Seelawi, Debora Nozza, Zeerak Talat, Bertie Vidgen
1
Jupyter Notebook
7/3/2022 VisFIS: Visual Feature Importance Supervision with Right-for-the-Right-Reason Objectives
Many past works aim to improve visual reasoning in models by supervising feature importance (estimated by model explanation techniques) with human annotations such as highlights of important image regions. However, recent work has shown that performance gains from feature importance (FI) supervision for Visual Question Answering (VQA) tasks persist even with random supervision, suggesting that these methods do not meaningfully align model FI with human FI. In this paper, we show that model FI supervision can meaningfully improve VQA model accuracy as well as performance on several Right-for-the-Right-Reason (RRR) metrics by optimizing for four key model objectives: (1) accurate predictions given limited but sufficient information (Sufficiency); (2) max-entropy predictions given no important information (Uncertainty); (3) invariance of predictions to changes in unimportant features (Invariance); and (4) alignment between model FI explanations and human FI explanations (Plausibility). Our best performing method, Visual Feature Importance Supervision (VisFIS), outperforms strong baselines on benchmark VQA datasets in terms of both in-distribution and out-of-distribution accuracy. While past work suggests that the mechanism for improved accuracy is through improved explanation plausibility, we show that this relationship depends crucially on explanation faithfulness (whether explanations truly represent the model's internal reasoning). Predictions are more accurate when explanations are plausible and faithful, and not when they are plausible but not faithful. Lastly, we show that, surprisingly, RRR metrics are not predictive of out-of-distribution model accuracy when controlling for a model's in-distribution accuracy, which calls into question the value of these metrics for evaluating model reasoning. All supporting code is available at this https URL
Zhuofan Ying, Peter Hase, Mohit Bansal
1
Python
7/3/2022 Always Keep your Target in Mind: Studying Semantics and Improving Performance of Neural Lexical Substitution
Lexical substitution, i.e. generation of plausible words that can replace a particular target word in a given context, is an extremely powerful technology that can be used as a backbone of various NLP applications, including word sense induction and disambiguation, lexical relation extraction, data augmentation, etc. In this paper, we present a large-scale comparative study of lexical substitution methods employing both rather old and most recent language and masked language models (LMs and MLMs), such as context2vec, ELMo, BERT, RoBERTa, XLNet. We show that already competitive results achieved by SOTA LMs/MLMs can be further substantially improved if information about the target word is injected properly. Several existing and new target word injection methods are compared for each LM/MLM using both intrinsic evaluation on lexical substitution datasets and extrinsic evaluation on word sense induction (WSI) datasets. On two WSI datasets we obtain new SOTA results. Besides, we analyze the types of semantic relations between target words and their substitutes generated by different models or given by annotators.
Nikolay Arefyev, Boris Sheludko, Alexander Podolskiy, Alexander Panchenko
0
7/3/2022 Multimodal Dialogue State Tracking
Designed for tracking user goals in dialogues, a dialogue state tracker is an essential component in a dialogue system. However, the research of dialogue state tracking has largely been limited to unimodality, in which slots and slot values are limited by knowledge domains (e.g. restaurant domain with slots of restaurant name and price range) and are defined by specific database schema. In this paper, we propose to extend the definition of dialogue state tracking to multimodality. Specifically, we introduce a novel dialogue state tracking task to track the information of visual objects that are mentioned in video-grounded dialogues. Each new dialogue utterance may introduce a new video segment, new visual objects, or new object attributes, and a state tracker is required to update these information slots accordingly. We created a new synthetic benchmark and designed a novel baseline, Video-Dialogue Transformer Network (VDTN), for this task. VDTN combines both object-level features and segment-level features and learns contextual dependencies between videos and dialogues to generate multimodal dialogue states. We optimized VDTN for a state generation task as well as a self-supervised video understanding task which recovers video segment or object representations. Finally, we trained VDTN to use the decoded states in a response prediction task. Together with comprehensive ablation and qualitative analysis, we discovered interesting insights towards building more capable multimodal dialogue systems.
Hung Le, Nancy F. Chen, Steven C.H. Hoi
0
7/3/2022 Argumentative Text Generation in Economic Domain
The development of large and super-large language models, such as GPT-3, T5, Switch Transformer, ERNIE, etc., has significantly improved the performance of text generation. One of the important research directions in this area is the generation of texts with arguments. The solution of this problem can be used in business meetings, political debates, dialogue systems, for preparation of student essays. One of the main domains for these applications is the economic sphere. The key problem of the argument text generation for the Russian language is the lack of annotated argumentation corpora. In this paper, we use translated versions of the Argumentative Microtext, Persuasive Essays and UKP Sentential corpora to fine-tune RuBERT model. Further, this model is used to annotate the corpus of economic news by argumentation. Then the annotated corpus is employed to fine-tune the ruGPT-3 model, which generates argument texts. The results show that this approach improves the accuracy of the argument generation by more than 20 percentage points (63.2\% vs. 42.5\%) compared to the original ruGPT-3 model.
Irina Fishcheva, Dmitriy Osadchiy, Klavdiya Bochenina, Evgeny Kotelnikov
0
7/3/2022 Hierarchical Context Tagging for Utterance Rewriting
Utterance rewriting aims to recover coreferences and omitted information from the latest turn of a multi-turn dialogue. Recently, methods that tag rather than linearly generate sequences have proven stronger in both in- and out-of-domain rewriting settings. This is due to a tagger's smaller search space as it can only copy tokens from the dialogue context. However, these methods may suffer from low coverage when phrases that must be added to a source utterance cannot be covered by a single context span. This can occur in languages like English that introduce tokens such as prepositions into the rewrite for grammaticality. We propose a hierarchical context tagger (HCT) that mitigates this issue by predicting slotted rules (e.g., "besides _") whose slots are later filled with context spans. HCT (i) tags the source string with token-level edit actions and slotted rules and (ii) fills in the resulting rule slots with spans from the dialogue context. This rule tagging allows HCT to add out-of-context tokens and multiple spans at once; we further cluster the rules to truncate the long tail of the rule distribution. Experiments on several benchmarks show that HCT can outperform state-of-the-art rewriting systems by ~2 BLEU points.
Lisa Jin, Linfeng Song, Lifeng Jin, Dong Yu, Daniel Gildea
0
Python
7/3/2022 niksss at HinglishEval: Language-agnostic BERT-based Contextual Embeddings with Catboost for Quality Evaluation of the Low-Resource Synthetically Generated Code-Mixed Hinglish Text
This paper describes the system description for the HinglishEval challenge at INLG 2022. The goal of this task was to investigate the factors influencing the quality of the code-mixed text generation system. The task was divided into two subtasks, quality rating prediction and annotators disagreement prediction of the synthetic Hinglish dataset. We attempted to solve these tasks using sentence-level embeddings, which are obtained from mean pooling the contextualized word embeddings for all input tokens in our text. We experimented with various classifiers on top of the embeddings produced for respective tasks. Our best-performing system ranked 1st on subtask B and 3rd on subtask A.
Nikhil Singh
0
Jupyter Notebook
7/3/2022 Fewer Errors, but More Stereotypes? The Effect of Model Size on Gender Bias
The size of pretrained models is increasing, and so is their performance on a variety of NLP tasks. However, as their memorization capacity grows, they might pick up more social biases. In this work, we examine the connection between model size and its gender bias (specifically, occupational gender bias). We measure bias in three masked language model families (RoBERTa, DeBERTa, and T5) in two setups: directly using prompt based method, and using a downstream task (Winogender). We find on the one hand that larger models receive higher bias scores on the former task, but when evaluated on the latter, they make fewer gender errors. To examine these potentially conflicting results, we carefully investigate the behavior of the different models on Winogender. We find that while larger models outperform smaller ones, the probability that their mistakes are caused by gender bias is higher. Moreover, we find that the proportion of stereotypical errors compared to anti-stereotypical ones grows with the model size. Our findings highlight the potential risks that can arise from increasing model size.
Yarden Tal, Inbal Magar, Roy Schwartz
0
7/3/2022 Studying the role of named entities for content preservation in text style transfer
Text style transfer techniques are gaining popularity in Natural Language Processing, finding various applications such as text detoxification, sentiment, or formality transfer. However, the majority of the existing approaches were tested on such domains as online communications on public platforms, music, or entertainment yet none of them were applied to the domains which are typical for task-oriented production systems, such as personal plans arrangements (e.g. booking of flights or reserving a table in a restaurant). We fill this gap by studying formality transfer in this domain. We noted that the texts in this domain are full of named entities, which are very important for keeping the original sense of the text. Indeed, if for example, someone communicates the destination city of a flight it must not be altered. Thus, we concentrate on the role of named entities in content preservation for formality text style transfer. We collect a new dataset for the evaluation of content similarity measures in text style transfer. It is taken from a corpus of task-oriented dialogues and contains many important entities related to realistic requests that make this dataset particularly useful for testing style transfer models before using them in production. Besides, we perform an error analysis of a pre-trained formality transfer model and introduce a simple technique to use information about named entities to enhance the performance of baseline content similarity measures used in text style transfer.
Nikolay Babakov, David Dale, Varvara Logacheva, Irina Krotova, Alexander Panchenko
0
Jupyter Notebook
7/3/2022 Building an Endangered Language Resource in the Classroom: Universal Dependencies for Kakataibo
In this paper, we launch a new Universal Dependencies treebank for an endangered language from Amazonia: Kakataibo, a Panoan language spoken in Peru. We first discuss the collaborative methodology implemented, which proved effective to create a treebank in the context of a Computational Linguistic course for undergraduates. Then, we describe the general details of the treebank and the language-specific considerations implemented for the proposed annotation. We finally conduct some experiments on part-of-speech tagging and syntactic dependency parsing. We focus on monolingual and transfer learning settings, where we study the impact of a Shipibo-Konibo treebank, another Panoan language resource.
Roberto Zariquiey, Claudia Alvarado, Ximena Echevarria, Luisa Gomez, Rosa Gonzales, Mariana Illescas, Sabina Oporto, Frederic Blum, Arturo Oncevay, Javier Vera
0
Python
7/3/2022 Theory-Grounded Measurement of U.S. Social Stereotypes in English Language Models
NLP models trained on text have been shown to reproduce human stereotypes, which can magnify harms to marginalized groups when systems are deployed at scale. We adapt the Agency-Belief-Communion (ABC) stereotype model of Koch et al. (2016) from social psychology as a framework for the systematic study and discovery of stereotypic group-trait associations in language models (LMs). We introduce the sensitivity test (SeT) for measuring stereotypical associations from language models. To evaluate SeT and other measures using the ABC model, we collect group-trait judgments from U.S.-based subjects to compare with English LM stereotypes. Finally, we extend this framework to measure LM stereotyping of intersectional identities.
Yang Trista Cao, Anna Sotnikova, Hal Daume III, Rachel Rudinger, Linda Zou
0
Python
7/3/2022 Language Models are General-Purpose Interfaces
Foundation models have received much attention due to their effectiveness across a broad range of downstream applications. Though there is a big convergence in terms of architecture, most pretrained models are typically still developed for specific tasks or modalities. In this work, we propose to use language models as a general-purpose interface to various foundation models. A collection of pretrained encoders perceive diverse modalities (such as vision, and language), and they dock with a language model that plays the role of a universal task layer. We propose a semi-causal language modeling objective to jointly pretrain the interface and the modular encoders. We subsume the advantages and capabilities from both causal and non-causal modeling, thereby combining the best of two worlds. Specifically, the proposed method not only inherits the capabilities of in-context learning and open-ended generation from causal language modeling, but also is conducive to finetuning because of the bidirectional encoders. More importantly, our approach seamlessly unlocks the combinations of the above capabilities, e.g., enabling in-context learning or instruction following with finetuned encoders. Experimental results across various language-only and vision-language benchmarks show that our model outperforms or is competitive with specialized models on finetuning, zero-shot generalization, and few-shot learning.
Yaru Hao, Haoyu Song, Li Dong, Shaohan Huang, Zewen Chi, Wenhui Wang, Shuming Ma, Furu Wei
5837
Python
7/3/2022 Comprehending and Ordering Semantics for Image Captioning
Comprehending the rich semantics in an image and ordering them in linguistic order are essential to compose a visually-grounded and linguistically coherent description for image captioning. Modern techniques commonly capitalize on a pre-trained object detector/classifier to mine the semantics in an image, while leaving the inherent linguistic ordering of semantics under-exploited. In this paper, we propose a new recipe of Transformer-style structure, namely Comprehending and Ordering Semantics Networks (COS-Net), that novelly unifies an enriched semantic comprehending and a learnable semantic ordering processes into a single architecture. Technically, we initially utilize a cross-modal retrieval model to search the relevant sentences of each image, and all words in the searched sentences are taken as primary semantic cues. Next, a novel semantic comprehender is devised to filter out the irrelevant semantic words in primary semantic cues, and meanwhile infer the missing relevant semantic words visually grounded in the image. After that, we feed all the screened and enriched semantic words into a semantic ranker, which learns to allocate all semantic words in linguistic order as humans. Such sequence of ordered semantic words are further integrated with visual tokens of images to trigger sentence generation. Empirical evidences show that COS-Net clearly surpasses the state-of-the-art approaches on COCO and achieves to-date the best CIDEr score of 141.1% on Karpathy test split. Source code is available at \url{this https URL}.
Yehao Li, Yingwei Pan, Ting Yao, Tao Mei
845
Python
7/3/2022 GLIPv2: Unifying Localization and Vision-Language Understanding
We present GLIPv2, a grounded VL understanding model, that serves both localization tasks (e.g., object detection, instance segmentation) and Vision-Language (VL) understanding tasks (e.g., VQA, image captioning). GLIPv2 elegantly unifies localization pre-training and Vision-Language Pre-training (VLP) with three pre-training tasks: phrase grounding as a VL reformulation of the detection task, region-word contrastive learning as a novel region-word level contrastive learning task, and the masked language modeling. This unification not only simplifies the previous multi-stage VLP procedure but also achieves mutual benefits between localization and understanding tasks. Experimental results show that a single GLIPv2 model (all model weights are shared) achieves near SoTA performance on various localization and understanding tasks. The model also shows (1) strong zero-shot and few-shot adaption performance on open-vocabulary object detection tasks and (2) superior grounding capability on VL understanding tasks. Code will be released at this https URL.
Haotian Zhang, Pengchuan Zhang, Xiaowei Hu, Yen-Chun Chen, Liunian Harold Li, Xiyang Dai, Lijuan Wang, Lu Yuan, Jenq-Neng Hwang, Jianfeng Gao
502
Python
7/3/2022 The YiTrans End-to-End Speech Translation System for IWSLT 2022 Offline Shared Task
This paper describes the submission of our end-to-end YiTrans speech translation system for the IWSLT 2022 offline task, which translates from English audio to German, Chinese, and Japanese. The YiTrans system is built on large-scale pre-trained encoder-decoder models. More specifically, we first design a multi-stage pre-training strategy to build a multi-modality model with a large amount of labeled and unlabeled data. We then fine-tune the corresponding components of the model for the downstream speech translation tasks. Moreover, we make various efforts to improve performance, such as data filtering, data augmentation, speech segmentation, model ensemble, and so on. Experimental results show that our YiTrans system obtains a significant improvement than the strong baseline on three translation directions, and it achieves +5.2 BLEU improvements over last year's optimal end-to-end system on tst2021 English-German. Our final submissions rank first on English-German and English-Chinese end-to-end systems in terms of the automatic evaluation metric. We make our code and models publicly available.
Ziqiang Zhang, Junyi Ao, Long Zhou, Shujie Liu, Furu Wei, Jinyu Li
64
Python
7/3/2022 Bridge-Tower: Building Bridges Between Encoders in Vision-Language Representation Learning
Vision-Language (VL) models with the Two-Tower architecture have dominated visual-language representation learning in recent years. Current VL models either use lightweight uni-modal encoders and learn to extract, align and fuse both modalities simultaneously in a cross-modal encoder, or feed the last-layer uni-modal features directly into the top cross-modal encoder, ignoring the semantic information at the different levels in the deep uni-modal encoders. Both approaches possibly restrict vision-language representation learning and limit model performance. In this paper, we introduce multiple bridge layers that build a connection between the top layers of uni-modal encoders and each layer of the cross-modal encoder. This enables comprehensive bottom-up interactions between visual and textual representations at different semantic levels, resulting in more effective cross-modal alignment and fusion. Our proposed Bridge-Tower, pre-trained with only $4$M images, achieves state-of-the-art performance on various downstream vision-language tasks. On the VQAv2 test-std set, Bridge-Tower achieves an accuracy of $78.73\%$, outperforming the previous state-of-the-art METER model by $1.09\%$ with the same pre-training data and almost no additional parameters and computational cost. Notably, when further scaling the model, Bridge-Tower achieves an accuracy of $81.15\%$, surpassing models that are pre-trained on orders-of-magnitude larger datasets. Code is available at this https URL.
Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Nan Duan
45
7/3/2022 Automatic Prosody Annotation with Pre-Trained Text-Speech Model
Prosodic boundary plays an important role in text-to-speech synthesis (TTS) in terms of naturalness and readability. However, the acquisition of prosodic boundary labels relies on manual annotation, which is costly and time-consuming. In this paper, we propose to automatically extract prosodic boundary labels from text-audio data via a neural text-speech model with pre-trained audio encoders. This model is pre-trained on text and speech data separately and jointly fine-tuned on TTS data in a triplet format: {speech, text, prosody}. The experimental results on both automatic evaluation and human evaluation demonstrate that: 1) the proposed text-speech prosody annotation framework significantly outperforms text-only baselines; 2) the quality of automatic prosodic boundary annotations is comparable to human annotations; 3) TTS systems trained with model-annotated boundaries are slightly better than systems that use manual ones.
Ziqian Dai, Jianwei Yu, Yan Wang, Nuo Chen, Yanyao Bian, Guangzhi Li, Deng Cai, Dong Yu
40
Python
7/3/2022 LST: Ladder Side-Tuning for Parameter and Memory Efficient Transfer Learning
Fine-tuning large pre-trained models on downstream tasks has been adopted in a variety of domains recently. However, it is costly to update the entire parameter set of large pre-trained models. Although recently proposed parameter-efficient transfer learning (PETL) techniques allow updating a small subset of parameters (e.g. only using 2% of parameters) inside a pre-trained backbone network for a new task, they only reduce the training memory requirement by up to 30%. This is because the gradient computation for the trainable parameters still requires backpropagation through the large pre-trained backbone model. To address this, we propose Ladder Side-Tuning (LST), a new PETL technique that reduces training memory requirements by more substantial amounts. Unlike existing parameter-efficient methods that insert additional parameters inside backbone networks, we train a ladder side network, a small and separate network that takes intermediate activations as input via shortcut connections (ladders) from backbone networks and makes predictions. LST has significantly lower memory requirements than previous methods, because it does not require backpropagation through the backbone network, but instead only through the side network and ladder connections. We evaluate our method with various models (T5, CLIP-T5) on both NLP (GLUE) and vision-language (VQA, GQA, NLVR2, MSCOCO) tasks. LST saves 69% of the memory costs to fine-tune the whole network, while other methods only save 26% of that in similar parameter usages (hence, 2.7x more memory savings). Moreover, LST achieves higher accuracy than Adapter and LoRA in a low-memory regime. To further show the advantage of this better memory efficiency, we also apply LST to larger T5 models (T5-large, T5-3B), attaining better GLUE performance than full fine-tuning and other PETL methods. The exact same trend also holds in our experiments on VL tasks.
Yi-Lin Sung, Jaemin Cho, Mohit Bansal
37
Python
7/3/2022 LIFT: Language-Interfaced Fine-Tuning for Non-Language Machine Learning Tasks
Fine-tuning pretrained language models (LMs) without making any architectural changes has become a norm for learning various language downstream tasks. However, for non-language downstream tasks, a common practice is to employ task-specific designs for input, output layers, and loss functions. For instance, it is possible to fine-tune an LM into an MNIST classifier by replacing the word embedding layer with an image patch embedding layer, the word token output layer with a 10-way output layer, and the word prediction loss with a 10-way classification loss, respectively. A natural question arises: can LM fine-tuning solve non-language downstream tasks without changing the model architecture or loss function? To answer this, we propose Language-Interfaced Fine-Tuning (LIFT) and study its efficacy and limitations by conducting an extensive empirical study on a suite of non-language classification and regression tasks. LIFT does not make any changes to the model architecture or loss function, and it solely relies on the natural language interface, enabling "no-code machine learning with LMs." We find that LIFT performs relatively well across a wide range of low-dimensional classification and regression tasks, matching the performances of the best baselines in many cases, especially for the classification tasks. We report the experimental results on the fundamental properties of LIFT, including its inductive bias, sample efficiency, ability to extrapolate, robustness to outliers and label noise, and generalization. We also analyze a few properties/techniques specific to LIFT, e.g., context-aware learning via appropriate prompting, quantification of predictive uncertainty, and two-stage fine-tuning. Our code is available at this https URL.
Tuan Dinh, Yuchen Zeng, Ruisu Zhang, Ziqian Lin, Michael Gira, Shashank Rajput, Jy-yong Sohn, Dimitris Papailiopoulos, Kangwook Lee
33
Jupyter Notebook
7/3/2022 Latent Diffusion Energy-Based Model for Interpretable Text Modeling
Latent space Energy-Based Models (EBMs), also known as energy-based priors, have drawn growing interests in generative modeling. Fueled by its flexibility in the formulation and strong modeling power of the latent space, recent works built upon it have made interesting attempts aiming at the interpretability of text modeling. However, latent space EBMs also inherit some flaws from EBMs in data space; the degenerate MCMC sampling quality in practice can lead to poor generation quality and instability in training, especially on data with complex latent structures. Inspired by the recent efforts that leverage diffusion recovery likelihood learning as a cure for the sampling issue, we introduce a novel symbiosis between the diffusion models and latent space EBMs in a variational learning framework, coined as the latent diffusion energy-based model. We develop a geometric clustering-based regularization jointly with the information bottleneck to further improve the quality of the learned latent space. Experiments on several challenging tasks demonstrate the superior performance of our model on interpretable text modeling over strong counterparts.
Peiyu Yu, Sirui Xie, Xiaojian Ma, Baoxiong Jia, Bo Pang, Ruiqi Gao, Yixin Zhu, Song-Chun Zhu, Ying Nian Wu
16
OpenEdge ABL
7/3/2022 The SIGMORPHON 2022 Shared Task on Morpheme Segmentation
The SIGMORPHON 2022 shared task on morpheme segmentation challenged systems to decompose a word into a sequence of morphemes and covered most types of morphology: compounds, derivations, and inflections. Subtask 1, word-level morpheme segmentation, covered 5 million words in 9 languages (Czech, English, Spanish, Hungarian, French, Italian, Russian, Latin, Mongolian) and received 13 system submissions from 7 teams and the best system averaged 97.29% F1 score across all languages, ranging English (93.84%) to Latin (99.38%). Subtask 2, sentence-level morpheme segmentation, covered 18,735 sentences in 3 languages (Czech, English, Mongolian), received 10 system submissions from 3 teams, and the best systems outperformed all three state-of-the-art subword tokenization methods (BPE, ULM, Morfessor2) by 30.71% absolute. To facilitate error analysis and support any type of future studies, we released all system predictions, the evaluation script, and all gold standard datasets.
Khuyagbaatar Batsuren, Gabor Bella, Aryaman Arora, Viktor Martinovi?, Kyle Gorman, Zdenek Zabokrtsky, Amarsanaa Ganbold, Sarka Dohnalova, Magda Sevcikova, Katerina Pelegrinova, Fausto Giunchiglia, Ryan Cotterell, Ekaterina Vylomova
11
Python
7/3/2022 Understanding Aesthetics with Language: A Photo Critique Dataset for Aesthetic Assessment
Computational inference of aesthetics is an ill-defined task due to its subjective nature. Many datasets have been proposed to tackle the problem by providing pairs of images and aesthetic scores based on human ratings. However, humans are better at expressing their opinion, taste, and emotions by means of language rather than summarizing them in a single number. In fact, photo critiques provide much richer information as they reveal how and why users rate the aesthetics of visual stimuli. In this regard, we propose the Reddit Photo Critique Dataset (RPCD), which contains tuples of image and photo critiques. RPCD consists of 74K images and 220K comments and is collected from a Reddit community used by hobbyists and professional photographers to improve their photography skills by leveraging constructive community feedback. The proposed dataset differs from previous aesthetics datasets mainly in three aspects, namely (i) the large scale of the dataset and the extension of the comments criticizing different aspects of the image, (ii) it contains mostly UltraHD images, and (iii) it can easily be extended to new data as it is collected through an automatic pipeline. To the best of our knowledge, in this work, we propose the first attempt to estimate the aesthetic quality of visual stimuli from the critiques. To this end, we exploit the polarity of the sentiment of criticism as an indicator of aesthetic judgment. We demonstrate how sentiment polarity correlates positively with the aesthetic judgment available for two aesthetic assessment benchmarks. Finally, we experiment with several models by using the sentiment scores as a target for ranking images. Dataset and baselines are available (this https URL).
Daniel Vera Nieto, Luigi Celona, Clara Fernandez-Labrador
10
Jupyter Notebook
7/3/2022 Prefix Language Models are Unified Modal Learners
With the success of vision-language pre-training, we have witnessed the state-of-the-art has been pushed on multi-modal understanding and generation. However, the current pre-training paradigm is either incapable of targeting all modalities at once (e.g., text generation and image generation), or requires multi-fold well-designed tasks which significantly limits the scalability. We demonstrate that a unified modal model could be learned with a prefix language modeling objective upon text and image sequences. Thanks to the simple but powerful pre-training paradigm, our proposed model, DaVinci, is simple to train, scalable to huge data, and adaptable to a variety of downstream tasks across modalities (language / vision / vision+language), types (understanding / generation) and settings (e.g., zero-shot, fine-tuning, linear evaluation) with a single unified architecture. DaVinci achieves the competitive performance on a wide range of 26 understanding / generation tasks, and outperforms previous unified vision-language models on most tasks, including ImageNet classification (+1.6%), VQAv2 (+1.4%), COCO caption generation (BLEU@4 +1.1%, CIDEr +1.5%) and COCO image generation (IS +0.9%, FID -1.0%), at the comparable model and data scale. Furthermore, we offer a well-defined benchmark for future research by reporting the performance on different scales of the pre-training dataset on a heterogeneous and wide distribution coverage. Our results establish new, stronger baselines for future comparisons at different data scales and shed light on the difficulties of comparing VLP models more generally.
Shizhe Diao, Wangchunshu Zhou, Xinsong Zhang, Jiawei Wang
8
7/3/2022 Astock: A New Dataset and Automated Stock Trading based on Stock-specific News Analyzing Model
Natural Language Processing(NLP) demonstrates a great potential to support financial decision-making by analyzing the text from social media or news outlets. In this work, we build a platform to study the NLP-aided stock auto-trading algorithms systematically. In contrast to the previous work, our platform is characterized by three features: (1) We provide financial news for each specific stock. (2) We provide various stock factors for each stock. (3) We evaluate performance from more financial-relevant metrics. Such a design allows us to develop and evaluate NLP-aided stock auto-trading algorithms in a more realistic setting. In addition to designing an evaluation platform and dataset collection, we also made a technical contribution by proposing a system to automatically learn a good feature representation from various input information. The key to our algorithm is a method called semantic role labeling Pooling (SRLP), which leverages Semantic Role Labeling (SRL) to create a compact representation of each news paragraph. Based on SRLP, we further incorporate other stock factors to make the final prediction. In addition, we propose a self-supervised learning strategy based on SRLP to enhance the out-of-distribution generalization performance of our system. Through our experimental study, we show that the proposed method achieves better performance and outperforms all the baselines' annualized rate of return as well as the maximum drawdown of the CSI300 index and XIN9 index on real trading. Our Astock dataset and code are available at this https URL.
Jinan Zou, Haiyao Cao, Lingqiao Liu, Yuhao Lin, Ehsan Abbasnejad, Javen Qinfeng Shi
6
Jupyter Notebook
7/3/2022 A smile is all you need: Predicting limiting activity coefficients from SMILES with natural language processing
Knowledge of mixtures' phase equilibria is crucial in nature and technical chemistry. Phase equilibria calculations of mixtures require activity coefficients. However, experimental data on activity coefficients is often limited due to high cost of experiments. For an accurate and efficient prediction of activity coefficients, machine learning approaches have been recently developed. However, current machine learning approaches still extrapolate poorly for activity coefficients of unknown molecules. In this work, we introduce the SMILES-to-Properties-Transformer (SPT), a natural language processing network to predict binary limiting activity coefficients from SMILES codes. To overcome the limitations of available experimental data, we initially train our network on a large dataset of synthetic data sampled from COSMO-RS (10 Million data points) and then fine-tune the model on experimental data (20 870 data points). This training strategy enables SPT to accurately predict limiting activity coefficients even for unknown molecules, cutting the mean prediction error in half compared to state-of-the-art models for activity coefficient predictions such as COSMO-RS, UNIFAC, and improving on recent machine learning approaches.
Benedikt Winter, Clemens Winter, Johannes Schilling, Andre Bardow
4
Python
7/3/2022 Task Transfer and Domain Adaptation for Zero-Shot Question Answering
Pretrained language models have shown success in various areas of natural language processing, including reading comprehension tasks. However, when applying machine learning methods to new domains, labeled data may not always be available. To address this, we use supervised pretraining on source-domain data to reduce sample complexity on domain-specific downstream tasks. We evaluate zero-shot performance on domain-specific reading comprehension tasks by combining task transfer with domain adaptation to fine-tune a pretrained model with no labelled data from the target task. Our approach outperforms Domain-Adaptive Pretraining on downstream domain-specific reading comprehension tasks in 3 out of 4 domains.
Xiang Pan, Alex Sheng, David Shimshoni, Aditya Singhal, Sara Rosenthal, Avirup Sil
3
7/3/2022 JiuZhang: A Chinese Pre-trained Language Model for Mathematical Problem Understanding
This paper aims to advance the mathematical intelligence of machines by presenting the first Chinese mathematical pre-trained language model~(PLM) for effectively understanding and representing mathematical problems. Unlike other standard NLP tasks, mathematical texts are difficult to understand, since they involve mathematical terminology, symbols and formulas in the problem statement. Typically, it requires complex mathematical logic and background knowledge for solving mathematical problems. Considering the complex nature of mathematical texts, we design a novel curriculum pre-training approach for improving the learning of mathematical PLMs, consisting of both basic and advanced courses. Specially, we first perform token-level pre-training based on a position-biased masking strategy, and then design logic-based pre-training tasks that aim to recover the shuffled sentences and formulas, respectively. Finally, we introduce a more difficult pre-training task that enforces the PLM to detect and correct the errors in its generated solutions. We conduct extensive experiments on offline evaluation (including nine math-related tasks) and online $A/B$ test. Experimental results demonstrate the effectiveness of our approach compared with a number of competitive baselines. Our code is available at: \textcolor{blue}{\url{this https URL}}.
Wayne Xin Zhao, Kun Zhou, Zheng Gong, Beichen Zhang, Yuanhang Zhou, Jing Sha, Zhigang Chen, Shijin Wang, Cong Liu, Ji-Rong Wen
3
7/3/2022 SciTweets -- A Dataset and Annotation Framework for Detecting Scientific Online Discourse
Scientific topics, claims and resources are increasingly debated as part of online discourse, where prominent examples include discourse related to COVID-19 or climate change. This has led to both significant societal impact and increased interest in scientific online discourse from various disciplines. For instance, communication studies aim at a deeper understanding of biases, quality or spreading pattern of scientific information whereas computational methods have been proposed to extract, classify or verify scientific claims using NLP and IR techniques. However, research across disciplines currently suffers from both a lack of robust definitions of the various forms of science-relatedness as well as appropriate ground truth data for distinguishing them. In this work, we contribute (a) an annotation framework and corresponding definitions for different forms of scientific relatedness of online discourse in Tweets, (b) an expert-annotated dataset of 1261 tweets obtained through our labeling framework reaching an average Fleiss Kappa $\kappa$ of 0.63, (c) a multi-label classifier trained on our data able to detect science-relatedness with 89% F1 and also able to detect distinct forms of scientific knowledge (claims, references). With this work we aim to lay the foundation for developing and evaluating robust methods for analysing science as part of large-scale online discourse.
Salim Hafid, Sebastian Schellhammer, Sandra Bringay, Konstantin Todorov, Stefan Dietze
2
Jupyter Notebook
7/3/2022 Automatic Correction of Human Translations
We introduce translation error correction (TEC), the task of automatically correcting human-generated translations. Imperfections in machine translations (MT) have long motivated systems for improving translations post-hoc with automatic post-editing. In contrast, little attention has been devoted to the problem of automatically correcting human translations, despite the intuition that humans make distinct errors that machines would be well-suited to assist with, from typos to inconsistencies in translation conventions. To investigate this, we build and release the Aced corpus with three TEC datasets. We show that human errors in TEC exhibit a more diverse range of errors and far fewer translation fluency errors than the MT errors in automatic post-editing datasets, suggesting the need for dedicated TEC models that are specialized to correct human errors. We show that pre-training instead on synthetic errors based on human errors improves TEC F-score by as much as 5.1 points. We conducted a human-in-the-loop user study with nine professional translation editors and found that the assistance of our TEC system led them to produce significantly higher quality revised translations.
Jessy Lin, Geza Kovacs, Aditya Shastry, Joern Wuebker, John DeNero
2
7/3/2022 FETILDA: An Effective Framework For Fin-tuned Embeddings For Long Financial Text Documents
Unstructured data, especially text, continues to grow rapidly in various domains. In particular, in the financial sphere, there is a wealth of accumulated unstructured financial data, such as the textual disclosure documents that companies submit on a regular basis to regulatory agencies, such as the Securities and Exchange Commission (SEC). These documents are typically very long and tend to contain valuable soft information about a company's performance. It is therefore of great interest to learn predictive models from these long textual documents, especially for forecasting numerical key performance indicators (KPIs). Whereas there has been a great progress in pre-trained language models (LMs) that learn from tremendously large corpora of textual data, they still struggle in terms of effective representations for long documents. Our work fills this critical need, namely how to develop better models to extract useful information from long textual documents and learn effective features that can leverage the soft financial and risk information for text regression (prediction) tasks. In this paper, we propose and implement a deep learning framework that splits long documents into chunks and utilizes pre-trained LMs to process and aggregate the chunks into vector representations, followed by self-attention to extract valuable document-level features. We evaluate our model on a collection of 10-K public disclosure reports from US banks, and another dataset of reports submitted by US companies. Overall, our framework outperforms strong baseline methods for textual modeling as well as a baseline regression model using only numerical data. Our work provides better insights into how utilizing pre-trained domain-specific and fine-tuned long-input LMs in representing long documents can improve the quality of representation of textual data, and therefore, help in improving predictive analyses.
Bolun "Namir" Xia, Vipula D. Rawte, Mohammed J. Zaki, Aparna Gupta
2
Python
7/3/2022 Language with Vision: a Study on Grounded Word and Sentence Embeddings
Language grounding to vision is an active field of research aiming to enrich text-based representations of word meanings by leveraging perceptual knowledge from vision. Despite many attempts at language grounding, it is still unclear how to effectively inject visual knowledge into the word embeddings of a language in such a way that a proper balance of textual and visual knowledge is maintained. Some common concerns are the following. Is visual grounding beneficial for abstract words or is its contribution only limited to concrete words? What is the optimal way of bridging the gap between text and vision? How much do we gain by visually grounding textual embeddings? The present study addresses these questions by proposing a simple yet very effective grounding approach for pre-trained word embeddings. Our model aligns textual embeddings with vision while largely preserving the distributional statistics that characterize word use in text corpora. By applying a learned alignment, we are able to generate visually grounded embeddings for unseen words, including abstract words. A series of evaluations on word similarity benchmarks shows that visual grounding is beneficial not only for concrete words, but also for abstract words. We also show that our method for visual grounding offers advantages for contextualized embeddings, but only when these are trained on corpora of relatively modest size. Code and grounded embeddings for English are available at this https URL.
Hassan Shahmohammadi, Maria Heitmeier, Elnaz Shafaei-Bajestan, Hendrik P. A. Lensch, Harald Baayen
1
Python
7/3/2022 Over-Generation Cannot Be Rewarded: Length-Adaptive Average Lagging for Simultaneous Speech Translation
Simultaneous speech translation (SimulST) systems aim at generating their output with the lowest possible latency, which is normally computed in terms of Average Lagging (AL). In this paper we highlight that, despite its widespread adoption, AL provides underestimated scores for systems that generate longer predictions compared to the corresponding references. We also show that this problem has practical relevance, as recent SimulST systems have indeed a tendency to over-generate. As a solution, we propose LAAL (Length-Adaptive Average Lagging), a modified version of the metric that takes into account the over-generation phenomenon and allows for unbiased evaluation of both under-/over-generating systems.
Sara Papi, Marco Gaido, Matteo Negri, Marco Turchi
1
Python
7/3/2022 CHQ-Summ: A Dataset for Consumer Healthcare Question Summarization
The quest for seeking health information has swamped the web with consumers' health-related questions. Generally, consumers use overly descriptive and peripheral information to express their medical condition or other healthcare needs, contributing to the challenges of natural language understanding. One way to address this challenge is to summarize the questions and distill the key information of the original question. To address this issue, we introduce a new dataset, CHQ-Summ that contains 1507 domain-expert annotated consumer health questions and corresponding summaries. The dataset is derived from the community question-answering forum and therefore provides a valuable resource for understanding consumer health-related posts on social media. We benchmark the dataset on multiple state-of-the-art summarization models to show the effectiveness of the dataset.
Shweta Yadav, Deepak Gupta, Dina Demner-Fushman
1
Python
7/3/2022 CookDial: A dataset for task-oriented dialogs grounded in procedural documents
This work presents a new dialog dataset, CookDial, that facilitates research on task-oriented dialog systems with procedural knowledge understanding. The corpus contains 260 human-to-human task-oriented dialogs in which an agent, given a recipe document, guides the user to cook a dish. Dialogs in CookDial exhibit two unique features: (i) procedural alignment between the dialog flow and supporting document; (ii) complex agent decision-making that involves segmenting long sentences, paraphrasing hard instructions and resolving coreference in the dialog context. In addition, we identify three challenging (sub)tasks in the assumed task-oriented dialog system: (1) User Question Understanding, (2) Agent Action Frame Prediction, and (3) Agent Response Generation. For each of these tasks, we develop a neural baseline model, which we evaluate on the CookDial dataset. We publicly release the CookDial dataset, comprising rich annotations of both dialogs and recipe documents, to stimulate further research on domain-specific document-grounded dialog systems.
Yiwei Jiang, Klim Zaporojets, Johannes Deleu, Thomas Demeester, Chris Develder
1
Python
7/3/2022 Improving the Adversarial Robustness of NLP Models by Information Bottleneck
Existing studies have demonstrated that adversarial examples can be directly attributed to the presence of non-robust features, which are highly predictive, but can be easily manipulated by adversaries to fool NLP models. In this study, we explore the feasibility of capturing task-specific robust features, while eliminating the non-robust ones by using the information bottleneck theory. Through extensive experiments, we show that the models trained with our information bottleneck-based method are able to achieve a significant improvement in robust accuracy, exceeding performances of all the previously reported defense methods while suffering almost no performance drop in clean accuracy on SST-2, AGNEWS and IMDB datasets.
Cenyuan Zhang, Xiang Zhou, Yixin Wan, Xiaoqing Zheng, Kai-Wei Chang, Cho-Jui Hsieh
1
Python
7/3/2022 Cross-TOP: Zero-Shot Cross-Schema Task-Oriented Parsing
Deep learning methods have enabled task-oriented semantic parsing of increasingly complex utterances. However, a single model is still typically trained and deployed for each task separately, requiring labeled training data for each, which makes it challenging to support new tasks, even within a single business vertical (e.g., food-ordering or travel booking). In this paper we describe Cross-TOP (Cross-Schema Task-Oriented Parsing), a zero-shot method for complex semantic parsing in a given vertical. By leveraging the fact that user requests from the same vertical share lexical and semantic similarities, a single cross-schema parser is trained to service an arbitrary number of tasks, seen or unseen, within a vertical. We show that Cross-TOP can achieve high accuracy on a previously unseen task without requiring any additional training data, thereby providing a scalable way to bootstrap semantic parsers for new tasks. As part of this work we release the FoodOrdering dataset, a task-oriented parsing dataset in the food-ordering vertical, with utterances and annotations derived from five schemas, each from a different restaurant menu.
Melanie Rubino, Nicolas Guenon des Mesnards, Uday Shah, Nanjiang Jiang, Weiqi Sun, Konstantine Arkoudas
0