The NLP Index

Magical Software ⚡

Total repos: 8,137
hits:
time: ms
Added Title Abstract Authors Paper Graph Code
1/4/2024 ZeroQuant(4+2): Redefining LLMs Quantization with a New FP6-Centric Strategy for Diverse Generative Tasks
This study examines 4-bit quantization methods like GPTQ in large language models (LLMs), highlighting GPTQ's overfitting and limited enhancement in Zero-Shot tasks. While prior works merely focusing on zero-shot measurement, we extend task scope to more generative categories such as code generation and abstractive summarization, in which we found that INT4 quantization can significantly underperform. However, simply shifting to higher precision formats like FP6 has been particularly challenging, thus overlooked, due to poor performance caused by the lack of sophisticated integration and system acceleration strategies on current AI hardware. Our results show that FP6, even with a coarse-grain quantization scheme, performs robustly across various algorithms and tasks, demonstrating its superiority in accuracy and versatility. Notably, with the FP6 quantization, \codestar-15B model performs comparably to its FP16 counterpart in code generation, and for smaller models like the 406M it closely matches their baselines in summarization. Neither can be achieved by INT4. To better accommodate various AI hardware and achieve the best system performance, we propose a novel 4+2 design for FP6 to achieve similar latency to the state-of-the-art INT4 fine-grain quantization. With our design, FP6 can become a promising solution to the current 4-bit quantization methods used in LLMs.
Xiaoxia Wu, Haojun Xia, Stephen Youn, Zhen Zheng, Shiyang Chen, Arash Bakhtiari, Michael Wyatt, Yuxiong He, Olatunji Ruwase, Leon Song, Zhewei Yao
30514
Python
1/4/2024 Seamless: Multilingual Expressive and Streaming Speech Translation
Large-scale automatic speech translation systems today lack key features that help machine-mediated communication feel seamless when compared to human-to-human dialogue. In this work, we introduce a family of models that enable end-to-end expressive and multilingual translations in a streaming fashion. First, we contribute an improved version of the massively multilingual and multimodal SeamlessM4T model-SeamlessM4T v2. This newer model, incorporating an updated UnitY2 framework, was trained on more low-resource language data. SeamlessM4T v2 provides the foundation on which our next two models are initiated. SeamlessExpressive enables translation that preserves vocal styles and prosody. Compared to previous efforts in expressive speech research, our work addresses certain underexplored aspects of prosody, such as speech rate and pauses, while also preserving the style of one's voice. As for SeamlessStreaming, our model leverages the Efficient Monotonic Multihead Attention mechanism to generate low-latency target translations without waiting for complete source utterances. As the first of its kind, SeamlessStreaming enables simultaneous speech-to-speech/text translation for multiple source and target languages. To ensure that our models can be used safely and responsibly, we implemented the first known red-teaming effort for multimodal machine translation, a system for the detection and mitigation of added toxicity, a systematic evaluation of gender bias, and an inaudible localized watermarking mechanism designed to dampen the impact of deepfakes. Consequently, we bring major components from SeamlessExpressive and SeamlessStreaming together to form Seamless, the first publicly available system that unlocks expressive cross-lingual communication in real-time. The contributions to this work are publicly released and accessible at this https URL
Seamless Communication, Loic Barrault, Yu-An Chung, Mariano Coria Meglioli, David Dale, Ning Dong, Mark Duppenthaler, Paul-Ambroise Duquenne, Brian Ellis, Hady Elsahar, Justin Haaheim, John Hoffman, Min-Jae Hwang, Hirofumi Inaguma, Christopher Klaiber, Ilia Kulikov, Pengwei Li, Daniel Licht, Jean Maillard, Ruslan Mavlyutov, Alice Rakotoarison, Kaushik Ram Sadagopan, Abinesh Ramakrishnan, Tuan Tran, Guillaume Wenzek, Yilin Yang, Ethan Ye, Ivan Evtimov, Pierre Fernandez, Cynthia Gao, Prangthip Hansanti, Elahe Kalbassi, Amanda Kallet, Artyom Kozhevnikov, Gabriel Mejia Gonzalez, Robin San Roman, Christophe Touret, Corinne Wong, Carleigh Wood, Bokai Yu, Pierre Andrews, Can Balioglu, Peng-Jen Chen, Marta R. Costa-juss�, Maha Elbayad, Hongyu Gong, Francisco Guzm�n, Kevin Heffernan, Somya Jain, Justine Kao, Ann Lee, Xutai Ma, Alex Mourachko, Benjamin Peloquin, Juan Pino, Sravya Popuri, Christophe Ropers, Safiyyah Saleem, Holger Schwenk, Anna Sun, Paden Tomasello, Changhan Wang, Jeff Wang, Skyler Wang, Mary Williamson
9270
Jupyter Notebook
1/4/2024 A Challenger to GPT-4V? Early Explorations of Gemini in Visual Expertise
The surge of interest towards Multi-modal Large Language Models (MLLMs), e.g., GPT-4V(ision) from OpenAI, has marked a significant trend in both academia and industry. They endow Large Language Models (LLMs) with powerful capabilities in visual understanding, enabling them to tackle diverse multi-modal tasks. Very recently, Google released Gemini, its newest and most capable MLLM built from the ground up for multi-modality. In light of the superior reasoning capabilities, can Gemini challenge GPT-4V's leading position in multi-modal learning? In this paper, we present a preliminary exploration of Gemini Pro's visual understanding proficiency, which comprehensively covers four domains: fundamental perception, advanced cognition, challenging vision tasks, and various expert capacities. We compare Gemini Pro with the state-of-the-art GPT-4V to evaluate its upper limits, along with the latest open-sourced MLLM, Sphinx, which reveals the gap between manual efforts and black-box systems. The qualitative samples indicate that, while GPT-4V and Gemini showcase different answering styles and preferences, they can exhibit comparable visual reasoning capabilities, and Sphinx still trails behind them concerning domain generalizability. Specifically, GPT-4V tends to elaborate detailed explanations and intermediate steps, and Gemini prefers to output a direct and concise answer. The quantitative evaluation on the popular MME benchmark also demonstrates the potential of Gemini to be a strong challenger to GPT-4V. Our early investigation of Gemini also observes some common issues of MLLMs, indicating that there still remains a considerable distance towards artificial general intelligence. Our project for tracking the progress of MLLM is released at this https URL.
Chaoyou Fu, Renrui Zhang, Zihan Wang, Yubo Huang, Zhengye Zhang, Longtian Qiu, Gaoxiang Ye, Yunhang Shen, Mengdan Zhang, Peixian Chen, Sirui Zhao, Shaohui Lin, Deqiang Jiang, Di Yin, Peng Gao, Ke Li, Hongsheng Li, Xing Sun
6610
1/4/2024 DSPy Assertions: Computational Constraints for Self-Refining Language Model Pipelines
Chaining language model (LM) calls as composable modules is fueling a new powerful way of programming. However, ensuring that LMs adhere to important constraints remains a key challenge, one often addressed with heuristic "prompt engineering". We introduce LM Assertions, a new programming construct for expressing computational constraints that LMs should satisfy. We integrate our constructs into the recent DSPy programming model for LMs, and present new strategies that allow DSPy to compile programs with arbitrary LM Assertions into systems that are more reliable and more accurate. In DSPy, LM Assertions can be integrated at compile time, via automatic prompt optimization, and/or at inference time, via automatic selfrefinement and backtracking. We report on two early case studies for complex question answering (QA), in which the LM program must iteratively retrieve information in multiple hops and synthesize a long-form answer with citations. We find that LM Assertions improve not only compliance with imposed rules and guidelines but also enhance downstream task performance, delivering intrinsic and extrinsic gains up to 35.7% and 13.3%, respectively. Our reference implementation of LM Assertions is integrated into DSPy at this https URL
Arnav Singhvi, Manish Shetty, Shangyin Tan, Christopher Potts, Koushik Sen, Matei Zaharia, Omar Khattab
4497
Python
1/4/2024 PromptBench: A Unified Library for Evaluation of Large Language Models
The evaluation of large language models (LLMs) is crucial to assess their performance and mitigate potential security risks. In this paper, we introduce PromptBench, a unified library to evaluate LLMs. It consists of several key components that are easily used and extended by researchers: prompt construction, prompt engineering, dataset and model loading, adversarial prompt attack, dynamic evaluation protocols, and analysis tools. PromptBench is designed to be an open, general, and flexible codebase for research purposes that can facilitate original study in creating new benchmarks, deploying downstream applications, and designing new evaluation protocols. The code is available at: this https URL and will be continuously supported.
Kaijie Zhu, Qinlin Zhao, Hao Chen, Jindong Wang, Xing Xie
1577
Python
1/4/2024 PyThaiNLP: Thai Natural Language Processing in Python
We present PyThaiNLP, a free and open-source natural language processing (NLP) library for Thai language implemented in Python. It provides a wide range of software, models, and datasets for Thai language. We first provide a brief historical context of tools for Thai language prior to the development of PyThaiNLP. We then outline the functionalities it provided as well as datasets and pre-trained language models. We later summarize its development milestones and discuss our experience during its development. We conclude by demonstrating how industrial and research communities utilize PyThaiNLP in their work. The library is freely available at this https URL.
Wannaphong Phatthiyaphaibun, Korakot Chaovavanich, Charin Polpanumas, Arthit Suriyawongkul, Lalita Lowphansirikul, Pattarawat Chormai, Peerat Limkonchotiwat, Thanathip Suntorntip, Can Udomcharoenchaikit
898
Python
1/4/2024 KwaiAgents: Generalized Information-seeking Agent System with Large Language Models
Driven by curiosity, humans have continually sought to explore and understand the world around them, leading to the invention of various tools to satiate this inquisitiveness. Despite not having the capacity to process and memorize vast amounts of information in their brains, humans excel in critical thinking, planning, reflection, and harnessing available tools to interact with and interpret the world, enabling them to find answers efficiently. The recent advancements in large language models (LLMs) suggest that machines might also possess the aforementioned human-like capabilities, allowing them to exhibit powerful abilities even with a constrained parameter count. In this paper, we introduce KwaiAgents, a generalized information-seeking agent system based on LLMs. Within KwaiAgents, we propose an agent system that employs LLMs as its cognitive core, which is capable of understanding a user's query, behavior guidelines, and referencing external documents. The agent can also update and retrieve information from its internal memory, plan and execute actions using a time-aware search-browse toolkit, and ultimately provide a comprehensive response. We further investigate the system's performance when powered by LLMs less advanced than GPT-4, and introduce the Meta-Agent Tuning (MAT) framework, designed to ensure even an open-sourced 7B or 13B model performs well among many agent systems. We exploit both benchmark and human evaluations to systematically validate these capabilities. Extensive experiments show the superiority of our agent system compared to other autonomous agents and highlight the enhanced generalized agent-abilities of our fine-tuned LLMs.
Haojie Pan, Zepeng Zhai, Hao Yuan, Yaojia Lv, Ruiji Fu, Ming Liu, Zhongyuan Wang, Bing Qin
562
Python
1/4/2024 Retrieval-Augmented Generation for Large Language Models: A Survey
Large language models (LLMs) demonstrate powerful capabilities, but they still face challenges in practical applications, such as hallucinations, slow knowledge updates, and lack of transparency in answers. Retrieval-Augmented Generation (RAG) refers to the retrieval of relevant information from external knowledge bases before answering questions with LLMs. RAG has been demonstrated to significantly enhance answer accuracy, reduce model hallucination, particularly for knowledge-intensive tasks. By citing sources, users can verify the accuracy of answers and increase trust in model outputs. It also facilitates knowledge updates and the introduction of domain-specific knowledge. RAG effectively combines the parameterized knowledge of LLMs with non-parameterized external knowledge bases, making it one of the most important methods for implementing large language models. This paper outlines the development paradigms of RAG in the era of LLMs, summarizing three paradigms: Naive RAG, Advanced RAG, and Modular RAG. It then provides a summary and organization of the three main components of RAG: retriever, generator, and augmentation methods, along with key technologies in each component. Furthermore, it discusses how to evaluate the effectiveness of RAG models, introducing two evaluation methods for RAG, emphasizing key metrics and abilities for evaluation, and presenting the latest automatic evaluation framework. Finally, potential future research directions are introduced from three aspects: vertical optimization, horizontal scalability, and the technical stack and ecosystem of RAG.
Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Haofen Wang
314
1/4/2024 OTOv3: Automatic Architecture-Agnostic Neural Network Training and Compression from Structured Pruning to Erasing Operators
Compressing a predefined deep neural network (DNN) into a compact sub-network with competitive performance is crucial in the efficient machine learning realm. This topic spans various techniques, from structured pruning to neural architecture search, encompassing both pruning and erasing operators perspectives. Despite advancements, existing methods suffers from complex, multi-stage processes that demand substantial engineering and domain knowledge, limiting their broader applications. We introduce the third-generation Only-Train-Once (OTOv3), which first automatically trains and compresses a general DNN through pruning and erasing operations, creating a compact and competitive sub-network without the need of fine-tuning. OTOv3 simplifies and automates the training and compression process, minimizes the engineering efforts required from users. It offers key technological advancements: (i) automatic search space construction for general DNNs based on dependency graph analysis; (ii) Dual Half-Space Projected Gradient (DHSPG) and its enhanced version with hierarchical search (H2SPG) to reliably solve (hierarchical) structured sparsity problems and ensure sub-network validity; and (iii) automated sub-network construction using solutions from DHSPG/H2SPG and dependency graphs. Our empirical results demonstrate the efficacy of OTOv3 across various benchmarks in structured pruning and neural architecture search. OTOv3 produces sub-networks that match or exceed the state-of-the-arts. The source code will be available at this https URL.
Tianyi Chen, Tianyu Ding, Zhihui Zhu, Zeyu Chen, HsiangTao Wu, Ilya Zharkov, Luming Liang
236
Python
1/4/2024 BLIVA: A Simple Multimodal LLM for Better Handling of Text-Rich Visual Questions
Vision Language Models (VLMs), which extend Large Language Models (LLM) by incorporating visual understanding capability, have demonstrated significant advancements in addressing open-ended visual question-answering (VQA) tasks. However, these models cannot accurately interpret images infused with text, a common occurrence in real-world scenarios. Standard procedures for extracting information from images often involve learning a fixed set of query embeddings. These embeddings are designed to encapsulate image contexts and are later used as soft prompt inputs in LLMs. Yet, this process is limited to the token count, potentially curtailing the recognition of scenes with text-rich context. To improve upon them, the present study introduces BLIVA: an augmented version of InstructBLIP with Visual Assistant. BLIVA incorporates the query embeddings from InstructBLIP and also directly projects encoded patch embeddings into the LLM, a technique inspired by LLaVA. This approach assists the model to capture intricate details potentially missed during the query decoding process. Empirical evidence demonstrates that our model, BLIVA, significantly enhances performance in processing text-rich VQA benchmarks (up to 17.76% in OCR-VQA benchmark) and in undertaking general (not particularly text-rich) VQA benchmarks (up to 7.9% in Visual Spatial Reasoning benchmark), comparing to our baseline InstructBLIP. BLIVA demonstrates significant capability in decoding real-world images, irrespective of text presence. To demonstrate the broad industry applications enabled by BLIVA, we evaluate the model using a new dataset comprising YouTube thumbnails paired with question-answer sets across 11 diverse categories. For researchers interested in further exploration, our code and models are freely accessible at this https URL.
Wenbo Hu, Yifan Xu, Yi Li, Weiyue Li, Zeyuan Chen, Zhuowen Tu
196
Python
1/4/2024 A Survey of Reasoning with Foundation Models: Concepts, Methodologies, and Outlook
Reasoning, a crucial ability for complex problem-solving, plays a pivotal role in various real-world settings such as negotiation, medical diagnosis, and criminal investigation. It serves as a fundamental methodology in the field of Artificial General Intelligence (AGI). With the ongoing development of foundation models, there is a growing interest in exploring their abilities in reasoning tasks. In this paper, we introduce seminal foundation models proposed or adaptable for reasoning, highlighting the latest advancements in various reasoning tasks, methods, and benchmarks. We then delve into the potential future directions behind the emergence of reasoning abilities within foundation models. We also discuss the relevance of multimodal learning, autonomous agents, and super alignment in the context of reasoning. By discussing these future research directions, we hope to inspire researchers in their exploration of this field, stimulate further advancements in reasoning with foundation models, and contribute to the development of AGI.
Jiankai Sun, Chuanyang Zheng, Enze Xie, Zhengying Liu, Ruihang Chu, Jianing Qiu, Jiaqi Xu, Mingyu Ding, Hongyang Li, Mengzhe Geng, Yue Wu, Wenhai Wang, Junsong Chen, Zhangyue Yin, Xiaozhe Ren, Jie Fu, Junxian He, Wu Yuan, Qi Liu, Xihui Liu, Yu Li, Hao Dong, Yu Cheng, Ming Zhang, Pheng Ann Heng, Jifeng Dai, Ping Luo, Jingdong Wang, Ji-Rong Wen, Xipeng Qiu, Yike Guo, Hui Xiong, Qun Liu, Zhenguo Li
181
1/4/2024 An In-depth Look at Gemini's Language Abilities
The recently released Google Gemini class of models are the first to comprehensively report results that rival the OpenAI GPT series across a wide variety of tasks. In this paper, we do an in-depth exploration of Gemini's language abilities, making two contributions. First, we provide a third-party, objective comparison of the abilities of the OpenAI GPT and Google Gemini models with reproducible code and fully transparent results. Second, we take a closer look at the results, identifying areas where one of the two model classes excels. We perform this analysis over 10 datasets testing a variety of language abilities, including reasoning, answering knowledge-based questions, solving math problems, translating between languages, generating code, and acting as instruction-following agents. From this analysis, we find that Gemini Pro achieves accuracy that is close but slightly inferior to the corresponding GPT 3.5 Turbo on all tasks that we benchmarked. We further provide explanations for some of this under-performance, including failures in mathematical reasoning with many digits, sensitivity to multiple-choice answer ordering, aggressive content filtering, and others. We also identify areas where Gemini demonstrates comparably high performance, including generation into non-English languages, and handling longer and more complex reasoning chains. Code and data for reproduction can be found at this https URL
Syeda Nahida Akter, Zichun Yu, Aashiq Muhamed, Tianyue Ou, Alex Bauerle, Angel Alexander Cabrera, Krish Dholakia, Chenyan Xiong, Graham Neubig
128
Jupyter Notebook
1/4/2024 Zoology: Measuring and Improving Recall in Efficient Language Models
Attention-free language models that combine gating and convolutions are growing in popularity due to their efficiency and increasingly competitive performance. To better understand these architectures, we pretrain a suite of 17 attention and "gated-convolution" language models, finding that SoTA gated-convolution architectures still underperform attention by up to 2.1 perplexity points on the Pile. In fine-grained analysis, we find 82% of the gap is explained by each model's ability to recall information that is previously mentioned in-context, e.g. "Hakuna Matata means no worries Hakuna Matata it means no" $\rightarrow$ "??". On this task, termed "associative recall", we find that attention outperforms gated-convolutions by a large margin: a 70M parameter attention model outperforms a 1.4 billion parameter gated-convolution model on associative recall. This is surprising because prior work shows gated convolutions can perfectly solve synthetic tests for AR capability. To close the gap between synthetics and real language, we develop a new formalization of the task called multi-query associative recall (MQAR) that better reflects actual language. We perform an empirical and theoretical study of MQAR that elucidates differences in the parameter-efficiency of attention and gated-convolution recall. Informed by our analysis, we evaluate simple convolution-attention hybrids and show that hybrids with input-dependent sparse attention patterns can close 97.4% of the gap to attention, while maintaining sub-quadratic scaling. Our code is accessible at: this https URL.
Simran Arora, Sabri Eyuboglu, Aman Timalsina, Isys Johnson, Michael Poli, James Zou, Atri Rudra, Christopher Re
75
Python
1/4/2024 Catwalk: A Unified Language Model Evaluation Framework for Many Datasets
The success of large language models has shifted the evaluation paradigms in natural language processing (NLP). The community's interest has drifted towards comparing NLP models across many tasks, domains, and datasets, often at an extreme scale. This imposes new engineering challenges: efforts in constructing datasets and models have been fragmented, and their formats and interfaces are incompatible. As a result, it often takes extensive (re)implementation efforts to make fair and controlled comparisons at scale. Catwalk aims to address these issues. Catwalk provides a unified interface to a broad range of existing NLP datasets and models, ranging from both canonical supervised training and fine-tuning, to more modern paradigms like in-context learning. Its carefully-designed abstractions allow for easy extensions to many others. Catwalk substantially lowers the barriers to conducting controlled experiments at scale. For example, we finetuned and evaluated over 64 models on over 86 datasets with a single command, without writing any code. Maintained by the AllenNLP team at the Allen Institute for Artificial Intelligence (AI2), Catwalk is an ongoing open-source effort: this https URL.
Dirk Groeneveld, Anas Awadalla, Iz Beltagy, Akshita Bhagia, Ian Magnusson, Hao Peng, Oyvind Tafjord, Pete Walsh, Kyle Richardson, Jesse Dodge
70
Python
1/4/2024 Interfacing Foundation Models' Embeddings
We present FIND, a generalized interface for aligning foundation models' embeddings. As shown in teaser figure, a lightweight transformer interface without tuning any foundation model weights is enough for a unified image (segmentation) and dataset-level (retrieval) understanding. The proposed interface has the following favorable attributes: (1) Generalizable. It applies to various tasks spanning retrieval, segmentation, \textit{etc.}, under the same architecture and weights. (2) Prototypable. Different tasks are able to be implemented through prototyping attention masks and embedding types. (3) Extendable. The proposed interface is adaptive to new tasks, and new models. (4) Interleavable. With the benefit of multi-task multi-modal training, the proposed interface creates an interleaved shared embedding space. In light of the interleaved embedding space, we introduce the FIND-Bench, which introduces new training and evaluation annotations to the COCO dataset for interleave segmentation and retrieval. Our approach achieves state-of-the-art performance on FIND-Bench and competitive performance on standard retrieval and segmentation settings. The training, evaluation, and demo code as well as the dataset have been released at this https URL.
Xueyan Zou, Linjie Li, Jianfeng Wang, Jianwei Yang, Mingyu Ding, Zhengyuan Yang, Feng Li, Hao Zhang, Shilong Liu, Arul Aravinthan, Yong Jae Lee, Lijuan Wang
67
Python
1/4/2024 Riveter: Measuring Power and Social Dynamics Between Entities
Riveter provides a complete easy-to-use pipeline for analyzing verb connotations associated with entities in text corpora. We prepopulate the package with connotation frames of sentiment, power, and agency, which have demonstrated usefulness for capturing social phenomena, such as gender bias, in a broad range of corpora. For decades, lexical frameworks have been foundational tools in computational social science, digital humanities, and natural language processing, facilitating multifaceted analysis of text corpora. But working with verb-centric lexica specifically requires natural language processing skills, reducing their accessibility to other researchers. By organizing the language processing pipeline, providing complete lexicon scores and visualizations for all entities in a corpus, and providing functionality for users to target specific research questions, Riveter greatly improves the accessibility of verb lexica and can facilitate a broad range of future research.
Maria Antoniak, Anjalie Field, Jimin Mun, Melanie Walsh, Lauren F. Klein, Maarten Sap
66
Jupyter Notebook
1/4/2024 Dense X Retrieval: What Retrieval Granularity Should We Use?
Dense retrieval has become a prominent method to obtain relevant context or world knowledge in open-domain NLP tasks. When we use a learned dense retriever on a retrieval corpus at inference time, an often-overlooked design choice is the retrieval unit in which the corpus is indexed, e.g. document, passage, or sentence. We discover that the retrieval unit choice significantly impacts the performance of both retrieval and downstream tasks. Distinct from the typical approach of using passages or sentences, we introduce a novel retrieval unit, proposition, for dense retrieval. Propositions are defined as atomic expressions within text, each encapsulating a distinct factoid and presented in a concise, self-contained natural language format. We conduct an empirical comparison of different retrieval granularity. Our results reveal that proposition-based retrieval significantly outperforms traditional passage or sentence-based methods in dense retrieval. Moreover, retrieval by proposition also enhances the performance of downstream QA tasks, since the retrieved texts are more condensed with question-relevant information, reducing the need for lengthy input tokens and minimizing the inclusion of extraneous, irrelevant information.
Tong Chen, Hongwei Wang, Sihao Chen, Wenhao Yu, Kaixin Ma, Xinran Zhao, Hongming Zhang, Dong Yu
64
1/4/2024 G-LLaVA: Solving Geometric Problem with Multi-Modal Large Language Model
Large language models (LLMs) have shown remarkable proficiency in human-level reasoning and generation capabilities, which encourages extensive research on their application in mathematical problem solving. However, current work has been largely focused on text-based mathematical problems, with limited investigation in problems involving geometric information. Addressing this gap, we aim to enable LLMs to solve geometric problems by understanding image input. We first analyze the limitations of current Multimodal Large Language Models (MLLMs) in this area: they struggle to accurately comprehending basic geometric elements and their relationships. To overcome these challenges, we take advantage of the unique characteristics of geometric problems (such as unique geometric logical form, and geometric scalability) and the capacity of the textual LLMs to build an enriched multimodal geometry dataset based on existing data. The augmented dataset, Geo170K, contains more than 170K geometric image-caption and question-answer pairs. Utilizing our constructed Geo170K dataset, we develop G-LLaVA, which demonstrates exceptional performance in solving geometric problems, significantly outperforming GPT-4-V on the MathVista benchmark with only 7B parameters.
Jiahui Gao, Renjie Pi, Jipeng Zhang, Jiacheng Ye, Wanjun Zhong, Yufei Wang, Lanqing Hong, Jianhua Han, Hang Xu, Zhenguo Li, Lingpeng Kong
63
Python
1/4/2024 Machine Mindset: An MBTI Exploration of Large Language Models
We present a novel approach for integrating Myers-Briggs Type Indicator (MBTI) personality traits into large language models (LLMs), addressing the challenges of personality consistency in personalized AI. Our method, "Machine Mindset," involves a two-phase fine-tuning and Direct Preference Optimization (DPO) to embed MBTI traits into LLMs. This approach ensures that models internalize these traits, offering a stable and consistent personality profile. We demonstrate the effectiveness of our models across various domains, showing alignment between model performance and their respective MBTI traits. The paper highlights significant contributions in the development of personality datasets and a new training methodology for personality integration in LLMs, enhancing the potential for personalized AI applications. We also open-sourced our model and part of the data at \url{this https URL}.
Jiaxi Cui, Liuzhenghao Lv, Jing Wen, Jing Tang, YongHong Tian, Li Yuan
60
Python
1/4/2024 Arabic Mini-ClimateGPT : A Climate Change and Sustainability Tailored Arabic LLM
Climate change is one of the most significant challenges we face together as a society. Creating awareness and educating policy makers the wide-ranging impact of climate change is an essential step towards a sustainable future. Recently, Large Language Models (LLMs) like ChatGPT and Bard have shown impressive conversational abilities and excel in a wide variety of NLP tasks. While these models are close-source, recently alternative open-source LLMs such as Stanford Alpaca and Vicuna have shown promising results. However, these open-source models are not specifically tailored for climate related domain specific information and also struggle to generate meaningful responses in other languages such as, Arabic. To this end, we propose a light-weight Arabic Mini-ClimateGPT that is built on an open-source LLM and is specifically fine-tuned on a conversational-style instruction tuning curated Arabic dataset Clima500-Instruct with over 500k instructions about climate change and sustainability. Further, our model also utilizes a vector embedding based retrieval mechanism during inference. We validate our proposed model through quantitative and qualitative evaluations on climate-related queries. Our model surpasses the baseline LLM in 88.3% of cases during ChatGPT-based evaluation. Furthermore, our human expert evaluation reveals an 81.6% preference for our model's responses over multiple popular open-source models. Our open-source demos, code-base and models are available here this https URL.
Sahal Shaji Mullappilly, Abdelrahman Shaker, Omkar Thawakar, Hisham Cholakkal, Rao Muhammad Anwer, Salman Khan, Fahad Shahbaz Khan
57
Python
1/4/2024 SwitchHead: Accelerating Transformers with Mixture-of-Experts Attention
The costly self-attention layers in modern Transformers require memory and compute quadratic in sequence length. Existing approximation methods usually underperform and fail to obtain significant speedups in practice. Here we present SwitchHead - a novel method that reduces both compute and memory requirements and achieves wall-clock speedup, while matching the language modeling performance of baseline Transformers with the same parameter budget. SwitchHead uses Mixture-of-Experts (MoE) layers for the value and output projections and requires 4 to 8 times fewer attention matrices than standard Transformers. Our novel attention can also be combined with MoE MLP layers, resulting in an efficient fully-MoE "SwitchAll" Transformer model. Our code is public.
Robert Csordas, Piotr Piekos, Kazuki Irie, Jurgen Schmidhuber
52
Python
1/4/2024 T-Eval: Evaluating the Tool Utilization Capability Step by Step
Large language models (LLM) have achieved remarkable performance on various NLP tasks and are augmented by tools for broader applications. Yet, how to evaluate and analyze the tool-utilization capability of LLMs is still under-explored. In contrast to previous works that evaluate models holistically, we comprehensively decompose the tool utilization into multiple sub-processes, including instruction following, planning, reasoning, retrieval, understanding, and review. Based on that, we further introduce \shortname~to evaluate the tool utilization capability step by step. \shortname~disentangles the tool utilization evaluation into several sub-domains along model capabilities, facilitating the inner understanding of both holistic and isolated competency of LLMs. We conduct extensive experiments on \shortname~and in-depth analysis of various LLMs. \shortname~ not only exhibits consistency with the outcome-oriented evaluation but also provides a more fine-grained analysis of the capabilities of LLMs, providing a new perspective in LLM evaluation on tool-utilization ability. The benchmark will be available at \href{this https URL}{this https URL}.
Zehui Chen, Weihua Du, Wenwei Zhang, Kuikun Liu, Jiangning Liu, Miao Zheng, Jingming Zhuo, Songyang Zhang, Dahua Lin, Kai Chen, Feng Zhao
48
Python
1/4/2024 LLM360: Towards Fully Transparent Open-Source LLMs
The recent surge in open-source Large Language Models (LLMs), such as LLaMA, Falcon, and Mistral, provides diverse options for AI practitioners and researchers. However, most LLMs have only released partial artifacts, such as the final model weights or inference code, and technical reports increasingly limit their scope to high-level design choices and surface statistics. These choices hinder progress in the field by degrading transparency into the training of LLMs and forcing teams to rediscover many details in the training process. We present LLM360, an initiative to fully open-source LLMs, which advocates for all training code and data, model checkpoints, and intermediate results to be made available to the community. The goal of LLM360 is to support open and collaborative AI research by making the end-to-end LLM training process transparent and reproducible by everyone. As a first step of LLM360, we release two 7B parameter LLMs pre-trained from scratch, Amber and CrystalCoder, including their training code, data, intermediate checkpoints, and analyses (at this https URL). We are committed to continually pushing the boundaries of LLMs through this open-source effort. More large-scale and stronger models are underway and will be released in the future.
Zhengzhong Liu, Aurick Qiao, Willie Neiswanger, Hongyi Wang, Bowen Tan, Tianhua Tao, Junbo Li, Yuqi Wang, Suqi Sun, Omkar Pangarkar, Richard Fan, Yi Gu, Victor Miller, Yonghao Zhuang, Guowei He, Haonan Li, Fajri Koto, Liping Tang, Nikhil Ranjan, Zhiqiang Shen, Xuguang Ren, Roberto Iriondo, Cun Mu, Zhiting Hu, Mark Schulze, Preslav Nakov, Tim Baldwin, Eric P. Xing
47
Python
1/4/2024 Alignment for Honesty
Recent research has made significant strides in applying alignment techniques to enhance the helpfulness and harmlessness of large language models (LLMs) in accordance with human intentions. In this paper, we argue for the importance of alignment for honesty, ensuring that LLMs proactively refuse to answer questions when they lack knowledge, while still not being overly conservative. However, a pivotal aspect of alignment for honesty involves discerning the limits of an LLM's knowledge, which is far from straightforward. This challenge demands comprehensive solutions in terms of metric development, benchmark creation, and training methodologies. In this paper, we address these challenges by first establishing a precise problem definition and defining ``honesty'' inspired by the Analects of Confucius. This serves as a cornerstone for developing metrics that effectively measure an LLM's honesty by quantifying its progress post-alignment. Furthermore, we introduce a flexible training framework which is further instantiated by several efficient fine-tuning techniques that emphasize honesty without sacrificing performance on other tasks. Our extensive experiments reveal that these aligned models show a marked increase in honesty, as indicated by our proposed metrics. We open-source a wealth of resources to facilitate future research at this https URL, including honesty-aligned models, training and evaluation datasets for honesty alignment, concept glossary, as well as all relevant source code.
Yuqing Yang, Ethan Chern, Xipeng Qiu, Graham Neubig, Pengfei Liu
42
Python
1/4/2024 Honeybee: Locality-enhanced Projector for Multimodal LLM
In Multimodal Large Language Models (MLLMs), a visual projector plays a crucial role in bridging pre-trained vision encoders with LLMs, enabling profound visual understanding while harnessing the LLMs' robust capabilities. Despite the importance of the visual projector, it has been relatively less explored. In this study, we first identify two essential projector properties: (i) flexibility in managing the number of visual tokens, crucial for MLLMs' overall efficiency, and (ii) preservation of local context from visual features, vital for spatial understanding. Based on these findings, we propose a novel projector design that is both flexible and locality-enhanced, effectively satisfying the two desirable properties. Additionally, we present comprehensive strategies to effectively utilize multiple and multifaceted instruction datasets. Through extensive experiments, we examine the impact of individual design choices. Finally, our proposed MLLM, Honeybee, remarkably outperforms previous state-of-the-art methods across various benchmarks, including MME, MMBench, SEED-Bench, and LLaVA-Bench, achieving significantly higher efficiency. Code and models are available at this https URL.
Junbum Cha, Wooyoung Kang, Jonghwan Mun, Byungseok Roh
38
Python
1/4/2024 A Semantic Space is Worth 256 Language Descriptions: Make Stronger Segmentation Models with Descriptive Properties
This paper introduces ProLab, a novel approach using property-level label space for creating strong interpretable segmentation models. Instead of relying solely on category-specific annotations, ProLab uses descriptive properties grounded in common sense knowledge for supervising segmentation models. It is based on two core designs. First, we employ Large Language Models (LLMs) and carefully crafted prompts to generate descriptions of all involved categories that carry meaningful common sense knowledge and follow a structured format. Second, we introduce a description embedding model preserving semantic correlation across descriptions and then cluster them into a set of descriptive properties (e.g., 256) using K-Means. These properties are based on interpretable common sense knowledge consistent with theories of human recognition. We empirically show that our approach makes segmentation models perform stronger on five classic benchmarks (e.g., ADE20K, COCO-Stuff, Pascal Context, Cityscapes, and BDD). Our method also shows better scalability with extended training steps than category-level supervision. Our interpretable segmentation framework also emerges with the generalization ability to segment out-of-domain or unknown categories using only in-domain descriptive properties. Code is available at this https URL.
Junfei Xiao, Ziqi Zhou, Wenxuan Li, Shiyi Lan, Jieru Mei, Zhiding Yu, Alan Yuille, Yuyin Zhou, Cihang Xie
28
Python
1/4/2024 MAC-SQL: Multi-Agent Collaboration for Text-to-SQL
Recent advancements in Text-to-SQL methods employing Large Language Models (LLMs) have demonstrated remarkable performance. Nonetheless, these approaches continue to encounter difficulties when handling extensive databases, intricate user queries, and erroneous SQL results. To tackle these challenges, we present \textbf{MAC-SQL}, a LLM-based multi-agent collaborative Text- to-SQL framework based on LLMs. This framework comprises three agents: the \textit{Selector}, accountable for condensing voluminous databases and preserving relevant table schemas for user questions; the \textit{Decomposer}, which disassembles complex user questions into more straightforward sub-problems and resolves them progressively; and the \textit{Refiner}, tasked with validating and refining defective SQL queries. We perform thorough experiments on two Text-to-SQL datasets, BIRD and Spider, attaining a state-of-the-art execution accuracy of 59.59\% on the BIRD test set. Moreover, we have open-sourced an instruction fine-tuning model, \textbf{SQL-Llama}, based on Code Llama 7B, in addition to an agent instruction dataset derived from training data based on BIRD and Spider. The SQL-Llama model has demonstrated encouraging outcomes on the development sets of both BIRD and Spider. However, when compared to the GPT-4 model, there remains a notable potential for enhancement. Our code and data can be accessed publicly at \href{this https URL}{this https URL}.
Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, Jiaqi Bai, Qian-Wen Zhang, Zhao Yan, Zhoujun Li
19
Python
1/4/2024 EgoPlan-Bench: Benchmarking Egocentric Embodied Planning with Multimodal Large Language Models
Multimodal Large Language Models (MLLMs), building upon the powerful Large Language Models (LLMs) with exceptional reasoning and generalization capability, have opened up new avenues for embodied task planning. MLLMs excel in their ability to integrate diverse environmental inputs, such as real-time task progress, visual observations, and open-form language instructions, which are crucial for executable task planning. In this work, we introduce a benchmark with human annotations, EgoPlan-Bench, to quantitatively investigate the potential of MLLMs as embodied task planners in real-world scenarios. Our benchmark is distinguished by realistic tasks derived from real-world videos, a diverse set of actions involving interactions with hundreds of different objects, and complex visual observations from varied environments. We evaluate various open-source MLLMs, revealing that these models have not yet evolved into embodied planning generalists (even GPT-4V). We further construct an instruction-tuning dataset EgoPlan-IT from videos of human-object interactions, to facilitate the learning of high-level task planning in intricate real-world situations. The experiment results demonstrate that the model tuned on EgoPlan-IT not only significantly improves performance on our benchmark, but also effectively acts as embodied planner in simulations.
Yi Chen, Yuying Ge, Yixiao Ge, Mingyu Ding, Bohao Li, Rui Wang, Ruifeng Xu, Ying Shan, Xihui Liu
17
Python
1/4/2024 Rethinking Compression: Reduced Order Modelling of Latent Features in Large Language Models
Due to the substantial scale of Large Language Models (LLMs), the direct application of conventional compression methodologies proves impractical. The computational demands associated with even minimal gradient updates present challenges, particularly on consumer-grade hardware. This paper introduces an innovative approach for the parametric and practical compression of LLMs based on reduced order modelling, which entails low-rank decomposition within the feature space and re-parameterization in the weight space. Notably, this compression technique operates in a layer-wise manner, obviating the need for a GPU device and enabling the compression of billion-scale models within stringent constraints of both memory and time. Our method represents a significant advancement in model compression by leveraging matrix decomposition, demonstrating superior efficacy compared to the prevailing state-of-the-art structured pruning method.
Arnav Chavan, Nahush Lele, Deepak Gupta
17
Python
1/4/2024 Do LVLMs Understand Charts? Analyzing and Correcting Factual Errors in Chart Captioning
Recent advancements in large vision-language models (LVLMs) have led to significant progress in generating natural language descriptions for visual content and thus enhancing various applications. One issue with these powerful models is that they sometimes produce texts that are factually inconsistent with the visual input. While there has been some effort to mitigate such inconsistencies in natural image captioning, the factuality of generated captions for structured document images, such as charts, has not received as much scrutiny, posing a potential threat to information reliability in critical applications. This work delves into the factuality aspect by introducing a comprehensive typology of factual errors in generated chart captions. A large-scale human annotation effort provides insight into the error patterns and frequencies in captions crafted by various chart captioning models, ultimately forming the foundation of a novel dataset, CHOCOLATE. Our analysis reveals that even state-of-the-art models, including GPT-4V, frequently produce captions laced with factual inaccuracies. In response to this challenge, we establish the new task of Chart Caption Factual Error Correction and introduce CHARTVE, a model for visual entailment that outperforms proprietary and open-source LVLMs in evaluating factual consistency. Furthermore, we propose C2TFEC, an interpretable two-stage framework that excels at correcting factual errors. This work inaugurates a new domain in factual error correction for chart captions, presenting a novel evaluation mechanism, and demonstrating an effective approach to ensuring the factuality of generated chart captions.
Kung-Hsiang Huang, Mingyang Zhou, Hou Pong Chan, Yi R. Fung, Zhenhailong Wang, Lingyu Zhang, Shih-Fu Chang, Heng Ji
16
Jupyter Notebook
1/4/2024 EQ-Bench: An Emotional Intelligence Benchmark for Large Language Models
We introduce EQ-Bench, a novel benchmark designed to evaluate aspects of emotional intelligence in Large Language Models (LLMs). We assess the ability of LLMs to understand complex emotions and social interactions by asking them to predict the intensity of emotional states of characters in a dialogue. The benchmark is able to discriminate effectively between a wide range of models. We find that EQ-Bench correlates strongly with comprehensive multi-domain benchmarks like MMLU (Hendrycks et al., 2020) (r=0.97), indicating that we may be capturing similar aspects of broad intelligence. Our benchmark produces highly repeatable results using a set of 60 English-language questions. We also provide open-source code for an automated benchmarking pipeline at this https URL and a leaderboard at this https URL
Samuel J. Paech
15
Python
1/4/2024 ASVD: Activation-aware Singular Value Decomposition for Compressing Large Language Models
This paper explores a new post-hoc training-free compression paradigm for compressing Large Language Models (LLMs) to facilitate their wider adoption in various computing environments. We delve into the challenges of LLM compression, notably their dependency on extensive training data and computational resources. We propose a training-free approach dubbed Activation-aware Singular Value Decomposition (ASVD) to address these limitations. ASVD effectively manages activation outliers by adjusting the weight matrix based on the activation distribution, improving decomposition accuracy and efficiency. Our method also addresses the varying sensitivity of different LLM layers to decomposition, with an iterative calibration process for optimal layer-specific decomposition. Experiments demonstrate that ASVD can compress network by 10%-20% without losing reasoning capacities. Additionally, it can be seamlessly integrated with other LLM compression paradigms, showcasing its flexible compatibility. Code and compressed models are available at this https URL.
Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang Wu, Yan Yan, Guangyu Sun
13
Python
1/4/2024 Faithful Persona-based Conversational Dataset Generation with Large Language Models
High-quality conversational datasets are essential for developing AI models that can communicate with users. One way to foster deeper interactions between a chatbot and its user is through personas, aspects of the user's character that provide insights into their personality, motivations, and behaviors. Training Natural Language Processing (NLP) models on a diverse and comprehensive persona-based dataset can lead to conversational models that create a deeper connection with the user, and maintain their engagement. In this paper, we leverage the power of Large Language Models (LLMs) to create a large, high-quality conversational dataset from a seed dataset. We propose a Generator-Critic architecture framework to expand the initial dataset, while improving the quality of its conversations. The Generator is an LLM prompted to output conversations. The Critic consists of a mixture of expert LLMs that control the quality of the generated conversations. These experts select the best generated conversations, which we then use to improve the Generator. We release Synthetic-Persona-Chat, consisting of 20k conversations seeded from Persona-Chat. We evaluate the quality of Synthetic-Persona-Chat and our generation framework on different dimensions through extensive experiments, and observe that the losing rate of Synthetic-Persona-Chat against Persona-Chat during Turing test decreases from 17.2% to 8.8% over three iterations.
Pegah Jandaghi, XiangHai Sheng, Xinyi Bai, Jay Pujara, Hakim Sidahmed
12
Python
1/4/2024 A General Model for Aggregating Annotations Across Simple, Complex, and Multi-Object Annotation Tasks
Human annotations are vital to supervised learning, yet annotators often disagree on the correct label, especially as annotation tasks increase in complexity. A strategy to improve label quality is to ask multiple annotators to label the same item and aggregate their labels. Many aggregation models have been proposed for categorical or numerical annotation tasks, but far less work has considered more complex annotation tasks involving open-ended, multivariate, or structured responses. While a variety of bespoke models have been proposed for specific tasks, our work is the first to introduce aggregation methods that generalize across many diverse complex tasks, including sequence labeling, translation, syntactic parsing, ranking, bounding boxes, and keypoints. This generality is achieved by devising a task-agnostic method to model distances between labels rather than the labels themselves. This article extends our prior work with investigation of three new research questions. First, how do complex annotation properties impact aggregation accuracy? Second, how should a task owner navigate the many modeling choices to maximize aggregation accuracy? Finally, what diagnoses can verify that aggregation models are specified correctly for the given data? To understand how various factors impact accuracy and to inform model selection, we conduct simulation studies and experiments on real, complex datasets. Regarding testing, we introduce unit tests for aggregation models and present a suite of such tests to ensure that a given model is not mis-specified and exhibits expected behavior. Beyond investigating these research questions above, we discuss the foundational concept of annotation complexity, present a new aggregation model as a bridge between traditional models and our own, and contribute a new semi-supervised learning method for complex label aggregation that outperforms prior work.
Alexander Braylan, Madalyn Marabella, Omar Alonso, Matthew Lease
12
Jupyter Notebook
1/4/2024 SMILE: Multimodal Dataset for Understanding Laughter in Video with Language Models
Despite the recent advances of the artificial intelligence, building social intelligence remains a challenge. Among social signals, laughter is one of the distinctive expressions that occurs during social interactions between humans. In this work, we tackle a new challenge for machines to understand the rationale behind laughter in video, Video Laugh Reasoning. We introduce this new task to explain why people laugh in a particular video and a dataset for this task. Our proposed dataset, SMILE, comprises video clips and language descriptions of why people laugh. We propose a baseline by leveraging the reasoning capacity of large language models (LLMs) with textual video representation. Experiments show that our baseline can generate plausible explanations for laughter. We further investigate the scalability of our baseline by probing other video understanding tasks and in-the-wild videos. We release our dataset, code, and model checkpoints on this https URL.
Lee Hyun, Kim Sung-Bin, Seungju Han, Youngjae Yu, Tae-Hyun Oh
12
Jupyter Notebook
1/4/2024 Building Domain-Specific LLMs Faithful To The Islamic Worldview: Mirage or Technical Possibility?
Large Language Models (LLMs) have demonstrated remarkable performance across numerous natural language understanding use cases. However, this impressive performance comes with inherent limitations, such as the tendency to perpetuate stereotypical biases or fabricate non-existent facts. In the context of Islam and its representation, accurate and factual representation of its beliefs and teachings rooted in the Quran and Sunnah is key. This work focuses on the challenge of building domain-specific LLMs faithful to the Islamic worldview and proposes ways to build and evaluate such systems. Firstly, we define this open-ended goal as a technical problem and propose various solutions. Subsequently, we critically examine known challenges inherent to each approach and highlight evaluation methodologies that can be used to assess such systems. This work highlights the need for high-quality datasets, evaluations, and interdisciplinary work blending machine learning with Islamic scholarship.
Shabaz Patel, Hassan Kane, Rayhan Patel
10
Jupyter Notebook
1/4/2024 Predictive Chemistry Augmented with Text Retrieval
This paper focuses on using natural language descriptions to enhance predictive models in the chemistry field. Conventionally, chemoinformatics models are trained with extensive structured data manually extracted from the literature. In this paper, we introduce TextReact, a novel method that directly augments predictive chemistry with texts retrieved from the literature. TextReact retrieves text descriptions relevant for a given chemical reaction, and then aligns them with the molecular representation of the reaction. This alignment is enhanced via an auxiliary masked LM objective incorporated in the predictor training. We empirically validate the framework on two chemistry tasks: reaction condition recommendation and one-step retrosynthesis. By leveraging text retrieval, TextReact significantly outperforms state-of-the-art chemoinformatics models trained solely on molecular data.
Yujie Qian, Zhening Li, Zhengkai Tu, Connor W. Coley, Regina Barzilay
10
Python
1/4/2024 Fine-tuning Large Language Models for Adaptive Machine Translation
This paper presents the outcomes of fine-tuning Mistral 7B, a general-purpose large language model (LLM), for adaptive machine translation (MT). The fine-tuning process involves utilising a combination of zero-shot and one-shot translation prompts within the medical domain. The primary objective is to enhance real-time adaptive MT capabilities of Mistral 7B, enabling it to adapt translations to the required domain at inference time. The results, particularly for Spanish-to-English MT, showcase the efficacy of the fine-tuned model, demonstrating quality improvements in both zero-shot and one-shot translation scenarios, surpassing Mistral 7B's baseline performance. Notably, the fine-tuned Mistral outperforms ChatGPT "gpt-3.5-turbo" in zero-shot translation while achieving comparable one-shot translation quality. Moreover, the zero-shot translation of the fine-tuned Mistral matches NLLB 3.3B's performance, and its one-shot translation quality surpasses that of NLLB 3.3B. These findings emphasise the significance of fine-tuning efficient LLMs like Mistral 7B to yield high-quality zero-shot translations comparable to task-oriented models like NLLB 3.3B. Additionally, the adaptive gains achieved in one-shot translation are comparable to those of commercial LLMs such as ChatGPT. Our experiments demonstrate that, with a relatively small dataset of 20,000 segments that incorporate a mix of zero-shot and one-shot prompts, fine-tuning significantly enhances Mistral's in-context learning ability, especially for real-time adaptive MT.
Yasmin Moslem, Rejwanul Haque, Andy Way
10
Jupyter Notebook
1/4/2024 Smart Agent-Based Modeling: On the Use of Large Language Models in Computer Simulations
Computer simulations offer a robust toolset for exploring complex systems across various disciplines. A particularly impactful approach within this realm is Agent-Based Modeling (ABM), which harnesses the interactions of individual agents to emulate intricate system dynamics. ABM's strength lies in its bottom-up methodology, illuminating emergent phenomena by modeling the behaviors of individual components of a system. Yet, ABM has its own set of challenges, notably its struggle with modeling natural language instructions and common sense in mathematical equations or rules. This paper seeks to transcend these boundaries by integrating Large Language Models (LLMs) like GPT into ABM. This amalgamation gives birth to a novel framework, Smart Agent-Based Modeling (SABM). Building upon the concept of smart agents -- entities characterized by their intelligence, adaptability, and computation ability -- we explore in the direction of utilizing LLM-powered agents to simulate real-world scenarios with increased nuance and realism. In this comprehensive exploration, we elucidate the state of the art of ABM, introduce SABM's potential and methodology, and present three case studies (source codes available at this https URL), demonstrating the SABM methodology and validating its effectiveness in modeling real-world systems. Furthermore, we cast a vision towards several aspects of the future of SABM, anticipating a broader horizon for its applications. Through this endeavor, we aspire to redefine the boundaries of computer simulations, enabling a more profound understanding of complex systems.
Zengqing Wu, Run Peng, Xu Han, Shuyuan Zheng, Yixin Zhang, Chuan Xiao
9
Python
1/4/2024 Bypassing the Safety Training of Open-Source LLMs with Priming Attacks
With the recent surge in popularity of LLMs has come an ever-increasing need for LLM safety training. In this paper, we show that SOTA open-source LLMs are vulnerable to simple, optimization-free attacks we refer to as $\textit{priming attacks}$, which are easy to execute and effectively bypass alignment from safety training. Our proposed attack improves the Attack Success Rate on Harmful Behaviors, as measured by Llama Guard, by up to $3.3\times$ compared to baselines. Source code and data are available at this https URL .
Jason Vega, Isha Chaudhary, Changming Xu, Gagandeep Singh
9
Python
1/4/2024 Labrador: Exploring the Limits of Masked Language Modeling for Laboratory Data
In this work we introduce Labrador, a pre-trained Transformer model for laboratory data. Labrador and BERT were pre-trained on a corpus of 100 million lab test results from electronic health records (EHRs) and evaluated on various downstream outcome prediction tasks. Both models demonstrate mastery of the pre-training task but neither consistently outperform XGBoost on downstream supervised tasks. Our ablation studies reveal that transfer learning shows limited effectiveness for BERT and achieves marginal success with Labrador. We explore the reasons for the failure of transfer learning and suggest that the data generating process underlying each patient cannot be characterized sufficiently using labs alone, among other factors. We encourage future work to focus on joint modeling of multiple EHR data categories and to include tree-based baselines in their evaluations.
David R. Bellamy, Bhawesh Kumar, Cindy Wang, Andrew Beam
8
Python
1/4/2024 Modeling Complex Mathematical Reasoning via Large Language Model based MathAgent
Large language models (LLMs) face challenges in solving complex mathematical problems that require comprehensive capacities to parse the statements, associate domain knowledge, perform compound logical reasoning, and integrate the intermediate rationales. Tackling all these problems once could be arduous for LLMs, thus leading to confusion in generation. In this work, we explore the potential of enhancing LLMs with agents by meticulous decomposition and modeling of mathematical reasoning process. Specifically, we propose a formal description of the mathematical solving and extend LLMs with an agent-based zero-shot framework named $\bf{P}$lanner-$\bf{R}$easoner-$\bf{E}$xecutor-$\bf{R}$eflector (PRER). We further provide and implement two MathAgents that define the logical forms and inherent relations via a pool of actions in different grains and orientations: MathAgent-M adapts its actions to LLMs, while MathAgent-H aligns with humankind. Experiments on miniF2F and MATH have demonstrated the effectiveness of PRER and proposed MathAgents, achieving an increase of $12.3\%$($53.9\%\xrightarrow{}66.2\%$) on the MiniF2F, $9.2\%$ ($49.8\%\xrightarrow{}59.0\%$) on MATH, and $13.2\%$($23.2\%\xrightarrow{}35.4\%$) for level-5 problems of MATH against GPT-4. Further analytical results provide more insightful perspectives on exploiting the behaviors of LLMs as agents.
Haoran Liao, Qinyi Du, Shaohua Hu, Hao He, Yanyan Xu, Jidong Tian, Yaohui Jin
8
Jupyter Notebook
1/4/2024 FREDSum: A Dialogue Summarization Corpus for French Political Debates
Recent advances in deep learning, and especially the invention of encoder-decoder architectures, has significantly improved the performance of abstractive summarization systems. The majority of research has focused on written documents, however, neglecting the problem of multi-party dialogue summarization. In this paper, we present a dataset of French political debates for the purpose of enhancing resources for multi-lingual dialogue summarization. Our dataset consists of manually transcribed and annotated political debates, covering a range of topics and perspectives. We highlight the importance of high quality transcription and annotations for training accurate and effective dialogue summarization models, and emphasize the need for multilingual resources to support dialogue summarization in non-English languages. We also provide baseline experiments using state-of-the-art methods, and encourage further research in this area to advance the field of dialogue summarization. Our dataset will be made publicly available for use by the research community.
Virgile Rennard, Guokan Shang, Damien Grari, Julie Hunter, Michalis Vazirgiannis
7
1/4/2024 MISCA: A Joint Model for Multiple Intent Detection and Slot Filling with Intent-Slot Co-Attention
The research study of detecting multiple intents and filling slots is becoming more popular because of its relevance to complicated real-world situations. Recent advanced approaches, which are joint models based on graphs, might still face two potential issues: (i) the uncertainty introduced by constructing graphs based on preliminary intents and slots, which may transfer intent-slot correlation information to incorrect label node destinations, and (ii) direct incorporation of multiple intent labels for each token w.r.t. token-level intent voting might potentially lead to incorrect slot predictions, thereby hurting the overall performance. To address these two issues, we propose a joint model named MISCA. Our MISCA introduces an intent-slot co-attention mechanism and an underlying layer of label attention mechanism. These mechanisms enable MISCA to effectively capture correlations between intents and slot labels, eliminating the need for graph construction. They also facilitate the transfer of correlation information in both directions: from intents to slots and from slots to intents, through multiple levels of label-specific representations, without relying on token-level intent information. Experimental results show that MISCA outperforms previous models, achieving new state-of-the-art overall accuracy performances on two benchmark datasets MixATIS and MixSNIPS. This highlights the effectiveness of our attention mechanisms.
Thinh Pham, Chi Tran, Dat Quoc Nguyen
7
Python
1/4/2024 Fluctuation-based Adaptive Structured Pruning for Large Language Models
Network Pruning is a promising way to address the huge computing resource demands of the deployment and inference of Large Language Models (LLMs). Retraining-free is important for LLMs' pruning methods. However, almost all of the existing retraining-free pruning approaches for LLMs focus on unstructured pruning, which requires specific hardware support for acceleration. In this paper, we propose a novel retraining-free structured pruning framework for LLMs, named FLAP (FLuctuation-based Adaptive Structured Pruning). It is hardware-friendly by effectively reducing storage and enhancing inference speed. For effective structured pruning of LLMs, we highlight three critical elements that demand the utmost attention: formulating structured importance metrics, adaptively searching the global compressed model, and implementing compensation mechanisms to mitigate performance loss. First, FLAP determines whether the output feature map is easily recoverable when a column of weight is removed, based on the fluctuation pruning metric. Then it standardizes the importance scores to adaptively determine the global compressed model structure. At last, FLAP adds additional bias terms to recover the output feature maps using the baseline values. We thoroughly evaluate our approach on a variety of language benchmarks. Without any retraining, our method significantly outperforms the state-of-the-art methods, including LLM-Pruner and the extension of Wanda in structured pruning. The code is released at this https URL.
Yongqi An, Xu Zhao, Tao Yu, Ming Tang, Jinqiao Wang
6
Python
1/4/2024 NLLG Quarterly arXiv Report 09/23: What are the most influential current AI Papers?
Artificial Intelligence (AI) has witnessed rapid growth, especially in the subfields Natural Language Processing (NLP), Machine Learning (ML) and Computer Vision (CV). Keeping pace with this rapid progress poses a considerable challenge for researchers and professionals in the field. In this arXiv report, the second of its kind, which covers the period from January to September 2023, we aim to provide insights and analysis that help navigate these dynamic areas of AI. We accomplish this by 1) identifying the top-40 most cited papers from arXiv in the given period, comparing the current top-40 papers to the previous report, which covered the period January to June; 2) analyzing dataset characteristics and keyword popularity; 3) examining the global sectoral distribution of institutions to reveal differences in engagement across geographical areas. Our findings highlight the continued dominance of NLP: while only 16% of all submitted papers have NLP as primary category (more than 25% have CV and ML as primary category), 50% of the most cited papers have NLP as primary category, 90% of which target LLMs. Additionally, we show that i) the US dominates among both top-40 and top-9k papers, followed by China; ii) Europe clearly lags behind and is hardly represented in the top-40 most cited papers; iii) US industry is largely overrepresented in the top-40 most influential papers.
Ran Zhang, Aida Kostikova, Christoph Leiter, Jonas Belouadi, Daniil Larionov, Yanran Chen, Vivian Fresen, Steffen Eger
6
Python
1/4/2024 Binary Code Summarization: Benchmarking ChatGPT/GPT-4 and Other Large Language Models
Binary code summarization, while invaluable for understanding code semantics, is challenging due to its labor-intensive nature. This study delves into the potential of large language models (LLMs) for binary code comprehension. To this end, we present BinSum, a comprehensive benchmark and dataset of over 557K binary functions and introduce a novel method for prompt synthesis and optimization. To more accurately gauge LLM performance, we also propose a new semantic similarity metric that surpasses traditional exact-match approaches. Our extensive evaluation of prominent LLMs, including ChatGPT, GPT-4, Llama 2, and Code Llama, reveals 10 pivotal insights. This evaluation generates 4 billion inference tokens, incurred a total expense of 11,418 US dollars and 873 NVIDIA A100 GPU hours. Our findings highlight both the transformative potential of LLMs in this field and the challenges yet to be overcome.
Xin Jin, Jonathan Larson, Weiwei Yang, Zhiqiang Lin
6
1/4/2024 Synergistic Anchored Contrastive Pre-training for Few-Shot Relation Extraction
Few-shot Relation Extraction (FSRE) aims to extract relational facts from a sparse set of labeled corpora. Recent studies have shown promising results in FSRE by employing Pre-trained Language Models (PLMs) within the framework of supervised contrastive learning, which considers both instances and label facts. However, how to effectively harness massive instance-label pairs to encompass the learned representation with semantic richness in this learning paradigm is not fully explored. To address this gap, we introduce a novel synergistic anchored contrastive pre-training framework. This framework is motivated by the insight that the diverse viewpoints conveyed through instance-label pairs capture incomplete yet complementary intrinsic textual semantics. Specifically, our framework involves a symmetrical contrastive objective that encompasses both sentence-anchored and label-anchored contrastive losses. By combining these two losses, the model establishes a robust and uniform representation space. This space effectively captures the reciprocal alignment of feature distributions among instances and relational facts, simultaneously enhancing the maximization of mutual information across diverse perspectives within the same relation. Experimental results demonstrate that our framework achieves significant performance enhancements compared to baseline models in downstream FSRE tasks. Furthermore, our approach exhibits superior adaptability to handle the challenges of domain shift and zero-shot relation extraction. Our code is available online at this https URL.
DaLuo, Yanglei Gan, Rui Hou, Run Lin, Qiao Liu, Yuxiang Cai, Wannian Gao
5
Python
1/4/2024 DelucionQA: Detecting Hallucinations in Domain-specific Question Answering
Hallucination is a well-known phenomenon in text generated by large language models (LLMs). The existence of hallucinatory responses is found in almost all application scenarios e.g., summarization, question-answering (QA) etc. For applications requiring high reliability (e.g., customer-facing assistants), the potential existence of hallucination in LLM-generated text is a critical problem. The amount of hallucination can be reduced by leveraging information retrieval to provide relevant background information to the LLM. However, LLMs can still generate hallucinatory content for various reasons (e.g., prioritizing its parametric knowledge over the context, failure to capture the relevant information from the context, etc.). Detecting hallucinations through automated methods is thus paramount. To facilitate research in this direction, we introduce a sophisticated dataset, DelucionQA, that captures hallucinations made by retrieval-augmented LLMs for a domain-specific QA task. Furthermore, we propose a set of hallucination detection methods to serve as baselines for future works from the research community. Analysis and case study are also provided to share valuable insights on hallucination phenomena in the target scenario.
Mobashir Sadat, Zhengyu Zhou, Lukas Lange, Jun Araki, Arsalan Gundroo, Bingqing Wang, Rakesh R Menon, Md Rizwan Parvez, Zhe Feng
5
1/4/2024 Towards More Faithful Natural Language Explanation Using Multi-Level Contrastive Learning in VQA
Natural language explanation in visual question answer (VQA-NLE) aims to explain the decision-making process of models by generating natural language sentences to increase users' trust in the black-box systems. Existing post-hoc methods have achieved significant progress in obtaining a plausible explanation. However, such post-hoc explanations are not always aligned with human logical inference, suffering from the issues on: 1) Deductive unsatisfiability, the generated explanations do not logically lead to the answer; 2) Factual inconsistency, the model falsifies its counterfactual explanation for answers without considering the facts in images; and 3) Semantic perturbation insensitivity, the model can not recognize the semantic changes caused by small perturbations. These problems reduce the faithfulness of explanations generated by models. To address the above issues, we propose a novel self-supervised \textbf{M}ulti-level \textbf{C}ontrastive \textbf{L}earning based natural language \textbf{E}xplanation model (MCLE) for VQA with semantic-level, image-level, and instance-level factual and counterfactual samples. MCLE extracts discriminative features and aligns the feature spaces from explanations with visual question and answer to generate more consistent explanations. We conduct extensive experiments, ablation analysis, and case study to demonstrate the effectiveness of our method on two VQA-NLE benchmarks.
Chengen Lai, Shengli Song, Shiqi Meng, Jingyang Li, Sitong Yan, Guangneng Hu
5
1/4/2024 When Parameter-efficient Tuning Meets General-purpose Vision-language Models
Instruction tuning has shown promising potential for developing general-purpose AI capabilities by using large-scale pre-trained models and boosts growing research to integrate multimodal information for creative applications. However, existing works still face two main limitations: the high training costs and heavy computing resource dependence of full model fine-tuning, and the lack of semantic information in instructions, which hinders multimodal alignment. Addressing these challenges, this paper proposes a novel approach to utilize Parameter-Efficient Tuning for generAl-purpose vision-Language models, namely PETAL. PETAL revolutionizes the training process by requiring only 0.5% of the total parameters, achieved through a unique mode approximation technique, which significantly reduces the training costs and reliance on heavy computing resources. Furthermore, PETAL enhances the semantic depth of instructions in two innovative ways: 1) by introducing adaptive instruction mixture-of-experts(MOEs), and 2) by fortifying the score-based linkage between parameter-efficient tuning and mutual information. Our extensive experiments across five multimodal downstream benchmarks reveal that PETAL not only outperforms current state-of-the-art methods in most scenarios but also surpasses full fine-tuning models in effectiveness. Additionally, our approach demonstrates remarkable advantages in few-shot settings, backed by comprehensive visualization analyses. Our source code is available at: https://github. com/melonking32/PETAL.
Yihang Zhai, Haixin Wang, Jianlong Chang, Xinlong Yang, Jinan Sun, Shikun Zhang, Qi Tian
5
Python
1/4/2024 NoMIRACL: Knowing When You Don't Know for Robust Multilingual Retrieval-Augmented Generation
Retrieval-augmented generation (RAG) grounds large language model (LLM) output by leveraging external knowledge sources to reduce factual hallucinations. However, prior works lack a comprehensive evaluation of different language families, making it challenging to evaluate LLM robustness against errors in external retrieved knowledge. To overcome this, we establish NoMIRACL, a human-annotated dataset for evaluating LLM robustness in RAG across 18 typologically diverse languages. NoMIRACL includes both a non-relevant and a relevant subset. Queries in the non-relevant subset contain passages manually judged as non-relevant or noisy, whereas queries in the relevant subset include at least a single judged relevant passage. We measure LLM robustness using two metrics: (i) hallucination rate, measuring model tendency to hallucinate an answer, when the answer is not present in passages in the non-relevant subset, and (ii) error rate, measuring model inaccuracy to recognize relevant passages in the relevant subset. We build a GPT-4 baseline which achieves a 33.2% hallucination rate on the non-relevant and a 14.9% error rate on the relevant subset on average. Our evaluation reveals that GPT-4 hallucinates frequently in high-resource languages, such as French or English. This work highlights an important avenue for future research to improve LLM robustness to learn how to better reject non-relevant information in RAG.
Nandan Thakur, Luiz Bonifacio, Xinyu Zhang, Odunayo Ogundepo, Ehsan Kamalloo, David Alfonso-Hermelo, Xiaoguang Li, Qun Liu, Boxing Chen, Mehdi Rezagholizadeh, Jimmy Lin
5
1/4/2024 Sparse is Enough in Fine-tuning Pre-trained Large Language Model
With the prevalence of pre-training-fine-tuning paradigm, how to efficiently adapt the pre-trained model to the downstream tasks has been an intriguing issue. Parameter-Efficient Fine-Tuning (PEFT) methods have been proposed for low-cost adaptation, including Adapters, Bia-only, and the recently widely used Low-Rank Adaptation. Although these methods have demonstrated their effectiveness to some extent and have been widely applied, the underlying principles are still unclear. In this paper, we reveal the transition of loss landscape in the downstream domain from random initialization to pre-trained initialization, that is, from low-amplitude oscillation to high-amplitude oscillation. The parameter gradients exhibit a property akin to sparsity, where a small fraction of components dominate the total gradient norm, for instance, 1% of the components account for 99% of the gradient. This property ensures that the pre-trained model can easily find a flat minimizer which guarantees the model's ability to generalize even with a low number of trainable parameters. Based on this, we propose a gradient-based sparse fine-tuning algorithm, named Sparse Increment Fine-Tuning (SIFT), and validate its effectiveness on a range of tasks including the GLUE Benchmark and Instruction-tuning. The code is accessible at this https URL.
Weixi Song, Zuchao Li, Lefei Zhang, Hai Zhao, Bo Du
5
Python
1/4/2024 TOD-Flow: Modeling the Structure of Task-Oriented Dialogues
Task-Oriented Dialogue (TOD) systems have become crucial components in interactive artificial intelligence applications. While recent advances have capitalized on pre-trained language models (PLMs), they exhibit limitations regarding transparency and controllability. To address these challenges, we propose a novel approach focusing on inferring the TOD-Flow graph from dialogue data annotated with dialog acts, uncovering the underlying task structure in the form of a graph. The inferred TOD-Flow graph can be easily integrated with any dialogue model to improve its prediction performance, transparency, and controllability. Our TOD-Flow graph learns what a model can, should, and should not predict, effectively reducing the search space and providing a rationale for the model's prediction. We show that the proposed TOD-Flow graph better resembles human-annotated graphs compared to prior approaches. Furthermore, when combined with several dialogue policies and end-to-end dialogue models, we demonstrate that our approach significantly improves dialog act classification and end-to-end response generation performance in the MultiWOZ and SGD benchmarks. Code available at: this https URL
Sungryull Sohn, Yiwei Lyu, Anthony Liu, Lajanugen Logeswaran, Dong-Ki Kim, Dongsub Shim, Honglak Lee
5
Jupyter Notebook
1/4/2024 Turning English-centric LLMs Into Polyglots: How Much Multilinguality Is Needed?
The vast majority of today's large language models are English-centric, having been pretrained predominantly on English text. Yet, in order to meet user expectations, models need to be able to respond appropriately in multiple languages once deployed in downstream applications. Given limited exposure to other languages during pretraining, cross-lingual transfer is important for achieving decent performance in non-English settings. In this work, we investigate just how much multilinguality is required during finetuning to elicit strong cross-lingual generalisation across a range of tasks and target languages. We find that, compared to English-only finetuning, multilingual instruction tuning with as few as three languages significantly improves a model's cross-lingual transfer abilities on generative tasks that assume input/output language agreement, while being of less importance for highly structured tasks. Our code and data is available at this https URL.
Tannon Kew, Florian Schottmann, Rico Sennrich
5
Jupyter Notebook
1/4/2024 Look Before You Leap: A Universal Emergent Decomposition of Retrieval Tasks in Language Models
When solving challenging problems, language models (LMs) are able to identify relevant information from long and complicated contexts. To study how LMs solve retrieval tasks in diverse situations, we introduce ORION, a collection of structured retrieval tasks spanning six domains, from text understanding to coding. Each task in ORION can be represented abstractly by a request (e.g. a question) that retrieves an attribute (e.g. the character name) from a context (e.g. a story). We apply causal analysis on 18 open-source language models with sizes ranging from 125 million to 70 billion parameters. We find that LMs internally decompose retrieval tasks in a modular way: middle layers at the last token position process the request, while late layers retrieve the correct entity from the context. After causally enforcing this decomposition, models are still able to solve the original task, preserving 70% of the original correct token probability in 98 of the 106 studied model-task pairs. We connect our macroscopic decomposition with a microscopic description by performing a fine-grained case study of a question-answering task on Pythia-2.8b. Building on our high-level understanding, we demonstrate a proof of concept application for scalable internal oversight of LMs to mitigate prompt-injection while requiring human supervision on only a single input. Our solution improves accuracy drastically (from 15.5% to 97.5% on Pythia-12b). This work presents evidence of a universal emergent modular processing of tasks across varied domains and models and is a pioneering effort in applying interpretability for scalable internal oversight of LMs.
Alexandre Variengien, Eric Winsor
4
Python
1/4/2024 ICD-LM: Configuring Vision-Language In-Context Demonstrations by Language Modeling
This paper studies how to configure powerful In-Context Demonstration (ICD) sequences for a Large Vision-Language Model (LVLM) to solve Vision-Language tasks through In-Context Learning (ICL). After observing that configuring an ICD sequence is a mirror process of composing a sentence, i.e., just as a sentence can be composed word by word via a Language Model, an ICD sequence can also be configured one by one. Consequently, we introduce an ICD Language Model (ICD-LM) specifically designed to generate effective ICD sequences. This involves creating a dataset of hand-crafted ICD sequences for various query samples and using it to train the ICD-LM. Our approach, diverging from traditional methods in NLP that select and order ICDs separately, enables to simultaneously learn how to select and order ICDs, enhancing the effect of the sequences. Moreover, during data construction, we use the LVLM intended for ICL implementation to validate the strength of each ICD sequence, resulting in a model-specific dataset and the ICD-LM trained by this dataset is also model-specific. We validate our methodology through experiments in Visual Question Answering and Image Captioning, confirming the viability of using a Language Model for ICD configuration. Our comprehensive ablation studies further explore the impact of various dataset construction and ICD-LM development settings on the outcomes. The code is given in this https URL.
Yingzhe Peng, Xu Yang, Haoxuan Ma, Shuo Xu, Chi Zhang, Yucheng Han, Hanwang Zhang
4
Python
1/4/2024 Multimodal Pretraining of Medical Time Series and Notes
Within the intensive care unit (ICU), a wealth of patient data, including clinical measurements and clinical notes, is readily available. This data is a valuable resource for comprehending patient health and informing medical decisions, but it also contains many challenges in analysis. Deep learning models show promise in extracting meaningful patterns, but they require extensive labeled data, a challenge in critical care. To address this, we propose a novel approach employing self-supervised pretraining, focusing on the alignment of clinical measurements and notes. Our approach combines contrastive and masked token prediction tasks during pretraining. Semi-supervised experiments on the MIMIC-III dataset demonstrate the effectiveness of our self-supervised pretraining. In downstream tasks, including in-hospital mortality prediction and phenotyping, our pretrained model outperforms baselines in settings where only a fraction of the data is labeled, emphasizing its ability to enhance ICU data analysis. Notably, our method excels in situations where very few labels are available, as evidenced by an increase in the AUC-ROC for in-hospital mortality by 0.17 and in AUC-PR for phenotyping by 0.1 when only 1% of labels are accessible. This work advances self-supervised learning in the healthcare domain, optimizing clinical insights from abundant yet challenging ICU data.
Ryan King, Tianbao Yang, Bobak Mortazavi
4
Python
1/4/2024 Large Language Models for Intent-Driven Session Recommendations
Intent-aware session recommendation (ISR) is pivotal in discerning user intents within sessions for precise predictions. Traditional approaches, however, face limitations due to their presumption of a uniform number of intents across all sessions. This assumption overlooks the dynamic nature of user sessions, where the number and type of intentions can significantly vary. In addition, these methods typically operate in latent spaces, thus hinder the model's transparency.Addressing these challenges, we introduce a novel ISR approach, utilizing the advanced reasoning capabilities of large language models (LLMs). First, this approach begins by generating an initial prompt that guides LLMs to predict the next item in a session, based on the varied intents manifested in user sessions. Then, to refine this process, we introduce an innovative prompt optimization mechanism that iteratively self-reflects and adjusts prompts. Furthermore, our prompt selection module, built upon the LLMs' broad adaptability, swiftly selects the most optimized prompts across diverse domains. This new paradigm empowers LLMs to discern diverse user intents at a semantic level, leading to more accurate and interpretable session recommendations. Our extensive experiments on three real-world datasets demonstrate the effectiveness of our method, marking a significant advancement in ISR systems.
Zhu Sun, Hongyang Liu, Xinghua Qu, Kaidong Feng, Yan Wang, Yew-Soon Ong
4
Python
1/4/2024 On Meta-Prompting
Certain statistical models are capable of interpreting input strings as instructions, or prompts, and carry out tasks based on them. Many approaches to prompting and pre-training these models involve the automated generation of these prompts. We call these approaches meta-prompting, or prompting to obtain prompts. We propose a theoretical framework based on category theory to generalize and describe them. This framework is flexible enough to account for LLM stochasticity; and allows us to obtain formal results around task agnosticity and equivalence of various meta-prompting approaches. We experiment with meta-prompting in two active areas of model research: creativity and ideation. We find that user preference favors (p < 0.01) the prompts generated under meta-prompting, as well as their corresponding outputs, over a series of hardcoded baseline prompts that include the original task prompt. Using our framework, we argue that meta-prompting is more effective than basic prompting at generating desirable outputs.
Adrian de Wynter, Xun Wang, Qilong Gu, Si-Qing Chen
3
Jupyter Notebook
1/4/2024 BoschAI @ Causal News Corpus 2023: Robust Cause-Effect Span Extraction using Multi-Layer Sequence Tagging and Data Augmentation
Understanding causality is a core aspect of intelligence. The Event Causality Identification with Causal News Corpus Shared Task addresses two aspects of this challenge: Subtask 1 aims at detecting causal relationships in texts, and Subtask 2 requires identifying signal words and the spans that refer to the cause or effect, respectively. Our system, which is based on pre-trained transformers, stacked sequence tagging, and synthetic data augmentation, ranks third in Subtask 1 and wins Subtask 2 with an F1 score of 72.8, corresponding to a margin of 13 pp. to the second-best system.
Timo Pierre Schrader, Simon Razniewski, Lukas Lange, Annemarie Friedrich
3
Python
1/4/2024 FusDom: Combining In-Domain and Out-of-Domain Knowledge for Continuous Self-Supervised Learning
Continued pre-training (CP) offers multiple advantages, like target domain adaptation and the potential to exploit the continuous stream of unlabeled data available online. However, continued pre-training on out-of-domain distributions often leads to catastrophic forgetting of previously acquired knowledge, leading to sub-optimal ASR performance. This paper presents FusDom, a simple and novel methodology for SSL-based continued pre-training. FusDom learns speech representations that are robust and adaptive yet not forgetful of concepts seen in the past. Instead of solving the SSL pre-text task on the output representations of a single model, FusDom leverages two identical pre-trained SSL models, a teacher and a student, with a modified pre-training head to solve the CP SSL pre-text task. This head employs a cross-attention mechanism between the representations of both models while only the student receives gradient updates and the teacher does not. Finally, the student is fine-tuned for ASR. In practice, FusDom outperforms all our baselines across settings significantly, with WER improvements in the range of 0.2 WER - 7.3 WER in the target domain while retaining the performance in the earlier domain.
Ashish Seth, Sreyan Ghosh, S. Umesh, Dinesh Manocha
3
Python
1/4/2024 RIGHT: Retrieval-augmented Generation for Mainstream Hashtag Recommendation
Automatic mainstream hashtag recommendation aims to accurately provide users with concise and popular topical hashtags before publication. Generally, mainstream hashtag recommendation faces challenges in the comprehensive difficulty of newly posted tweets in response to new topics, and the accurate identification of mainstream hashtags beyond semantic correctness. However, previous retrieval-based methods based on a fixed predefined mainstream hashtag list excel in producing mainstream hashtags, but fail to understand the constant flow of up-to-date information. Conversely, generation-based methods demonstrate a superior ability to comprehend newly posted tweets, but their capacity is constrained to identifying mainstream hashtags without additional features. Inspired by the recent success of the retrieval-augmented technique, in this work, we attempt to adopt this framework to combine the advantages of both approaches. Meantime, with the help of the generator component, we could rethink how to further improve the quality of the retriever component at a low cost. Therefore, we propose RetrIeval-augmented Generative Mainstream HashTag Recommender (RIGHT), which consists of three components: 1) a retriever seeks relevant hashtags from the entire tweet-hashtags set; 2) a selector enhances mainstream identification by introducing global signals; and 3) a generator incorporates input tweets and selected hashtags to directly generate the desired hashtags. The experimental results show that our method achieves significant improvements over state-of-the-art baselines. Moreover, RIGHT can be easily integrated into large language models, improving the performance of ChatGPT by more than 10%.
Run-Ze Fan, Yixing Fan, Jiangui Chen, Jiafeng Guo, Ruqing Zhang, Xueqi Cheng
3
Python
1/4/2024 HyperPIE: Hyperparameter Information Extraction from Scientific Publications
Automatic extraction of information from publications is key to making scientific knowledge machine readable at a large scale. The extracted information can, for example, facilitate academic search, decision making, and knowledge graph construction. An important type of information not covered by existing approaches is hyperparameters. In this paper, we formalize and tackle hyperparameter information extraction (HyperPIE) as an entity recognition and relation extraction task. We create a labeled data set covering publications from a variety of computer science disciplines. Using this data set, we train and evaluate BERT-based fine-tuned models as well as five large language models: GPT-3.5, GALACTICA, Falcon, Vicuna, and WizardLM. For fine-tuned models, we develop a relation extraction approach that achieves an improvement of 29% F1 over a state-of-the-art baseline. For large language models, we develop an approach leveraging YAML output for structured data extraction, which achieves an average improvement of 5.5% F1 in entity recognition over using JSON. With our best performing model we extract hyperparameter information from a large number of unannotated papers, and analyze patterns across disciplines. All our data and source code is publicly available at this https URL
Tarek Saier, Mayumi Ohta, Takuto Asakura, Michael Farber
3
Jupyter Notebook
1/4/2024 Modality Plug-and-Play: Elastic Modality Adaptation in Multimodal LLMs for Embodied AI
Large Language Models (LLMs) are capable of reasoning over diverse input data modalities through pre-trained encoders. However, the growing diversity of input data modalities prevents incorporating all modalities into LLMs, especially when LLMs are deployed on resource-constrained edge devices for embodied AI applications. Instead, a better option is to adaptively involve only the useful modalities at runtime, depending on the current environmental contexts and task requirements. For such modality adaptation, existing work adopts fixed connections between encoders and the LLM's input layer, leading to high training cost at runtime and ineffective cross-modal interaction. In this paper, we address these limitations by presenting mPnP-LLM, a new technique that allows fully elastic, automated and prompt runtime modality adaptation, by connecting unimodal encoders to a flexible set of last LLM blocks and making such latent connections fully trainable at runtime. Experiments over the nuScenes-QA dataset show that mPnP-LLM can achieve up to 3.7x FLOPs reduction and 30% GPU memory usage reduction, while retaining on-par accuracy with the existing schemes. Under the same compute budget, mPnP-LLM improves the task accuracy by up to 4% compared to the best existing scheme.
Kai Huang, Boyuan Yang, Wei Gao
3
Python
1/4/2024 Steering Llama 2 via Contrastive Activation Addition
We introduce Contrastive Activation Addition (CAA), an innovative method for steering language models by modifying activations during their forward passes. CAA computes ``steering vectors'' by averaging the difference in residual stream activations between pairs of positive and negative examples of a particular behavior such as factual versus hallucinatory responses. During inference, these steering vectors are added at all token positions after the user's prompt with either a positive or negative coefficient, allowing precise control over the degree of the targeted behavior. We evaluate CAA's effectiveness on Llama 2 Chat using both multiple-choice behavioral question datasets and open-ended generation tasks. We demonstrate that CAA significantly alters model behavior, outperforms traditional methods like finetuning and few-shot prompting, and minimally reduces capabilities. Moreover, by employing various activation space interpretation methods, we gain deeper insights into CAA's mechanisms. CAA both accurately steers model outputs and also sheds light on how high-level concepts are represented in Large Language Models (LLMs).
Nina Rimsky, Nick Gabrieli, Julian Schulz, Meg Tong, Evan Hubinger, Alexander Matt Turner
3
Python
1/4/2024 Get an A in Math: Progressive Rectification Prompting
Chain-of-Thought (CoT) prompting methods have enabled large language models (LLMs) to generate reasoning paths and solve math word problems (MWPs). However, they are sensitive to mistakes in the paths, as any mistake can result in an incorrect answer. We propose a novel method named Progressive Rectification Prompting (PRP) to improve average accuracy on eight MWP datasets from 77.3 to 90.5. Given an initial answer from CoT, PRP iterates a verify-then-rectify process to progressively identify incorrect answers and rectify the reasoning paths. With the most likely correct answer, the LLM predicts a masked numerical value in the question; if the prediction does not match the masked value, the answer is likely incorrect. Then the LLM is prompted to re-generate the reasoning path hinted with a set of incorrect answers to prevent itself from repeating previous mistakes. PRP achieves the best performance compared against the CoT methods. Our implementation is made publicly available at this https URL.
Zhenyu Wu, Meng Jiang, Chao Shen
3
Python
1/4/2024 Relation-Aware Question Answering for Heterogeneous Knowledge Graphs
Multi-hop Knowledge Base Question Answering(KBQA) aims to find the answer entity in a knowledge graph (KG), which requires multiple steps of reasoning. Existing retrieval-based approaches solve this task by concentrating on the specific relation at different hops and predicting the intermediate entity within the reasoning path. During the reasoning process of these methods, the representation of relations are fixed but the initial relation representation may not be optimal. We claim they fail to utilize information from head-tail entities and the semantic connection between relations to enhance the current relation representation, which undermines the ability to capture information of relations in KGs. To address this issue, we construct a \textbf{dual relation graph} where each node denotes a relation in the original KG (\textbf{primal entity graph}) and edges are constructed between relations sharing same head or tail entities. Then we iteratively do primal entity graph reasoning, dual relation graph information propagation, and interaction between these two graphs. In this way, the interaction between entity and relation is enhanced, and we derive better entity and relation representations. Experiments on two public datasets, WebQSP and CWQ, show that our approach achieves a significant performance gain over the prior state-of-the-art. Our code is available on \url{this https URL}.
Haowei Du, Quzhe Huang, Chen Li, Chen Zhang, Yang Li, Dongyan Zhao
3
Python
1/4/2024 COOPER: Coordinating Specialized Agents towards a Complex Dialogue Goal
In recent years, there has been a growing interest in exploring dialogues with more complex goals, such as negotiation, persuasion, and emotional support, which go beyond traditional service-focused dialogue systems. Apart from the requirement for much more sophisticated strategic reasoning and communication skills, a significant challenge of these tasks lies in the difficulty of objectively measuring the achievement of their goals in a quantifiable way, making it difficult for existing research to directly optimize the dialogue procedure towards them. In our work, we emphasize the multifaceted nature of complex dialogue goals and argue that it is more feasible to accomplish them by comprehensively considering and jointly promoting their different aspects. To this end, we propose a novel dialogue framework, Cooper, which coordinates multiple specialized agents, each dedicated to a specific dialogue goal aspect separately, to approach the complex objective. Through this divide-and-conquer manner, we make complex dialogue goals more approachable and elicit greater intelligence via the collaboration of individual agents. Experiments on persuasion and emotional support dialogues demonstrate the superiority of our method over a set of competitive baselines.
Yi Cheng, Wenge Liu, Jian Wang, Chak Tou Leong, Yi Ouyang, Wenjie Li, Xian Wu, Yefeng Zheng
3
1/4/2024 SeGA: Preference-Aware Self-Contrastive Learning with Prompts for Anomalous User Detection on Twitter
In the dynamic and rapidly evolving world of social media, detecting anomalous users has become a crucial task to address malicious activities such as misinformation and cyberbullying. As the increasing number of anomalous users improves the ability to mimic normal users and evade detection, existing methods only focusing on bot detection are ineffective in terms of capturing subtle distinctions between users. To address these challenges, we proposed SeGA, preference-aware self-contrastive learning for anomalous user detection, which leverages heterogeneous entities and their relations in the Twittersphere to detect anomalous users with different malicious strategies. SeGA utilizes the knowledge of large language models to summarize user preferences via posts. In addition, integrating user preferences with prompts as pseudo-labels for preference-aware self-contrastive learning enables the model to learn multifaceted aspects for describing the behaviors of users. Extensive experiments on the proposed TwBNT benchmark demonstrate that SeGA significantly outperforms the state-of-the-art methods (+3.5\% ~ 27.6\%) and empirically validate the effectiveness of the model design and pre-training strategies. Our code and data are publicly available at this https URL.
Ying-Ying Chang, Wei-Yao Wang, Wen-Chih Peng
3
Python
1/4/2024 Structured Probabilistic Coding
This paper presents a new supervised representation learning framework, namely Structured Probabilistic Coding (SPC), to learn compact and informative representations from input related to the target task. SPC is an encoder-only probabilistic coding technology with a structured regularization from the target label space. By extracting compact and informative representations from input related to the target task, SPC can enhance the generalization ability of pre-trained language models for better language understanding. Specifically, the hidden representation is encoded into a Gaussian distribution space, while maximizing the prior entropy of latent representations concerning label space. This technique can simultaneously perform information encoding and task prediction in one module to more fully utilize the effective information from input data, and use variational inference in the output space to reduce randomness and uncertainty. To better control the probability distribution in the latent space, a structured regularization is proposed to promote class-level uniformity in the latent space. With the regularization term, SPC can preserve the Gaussian distribution structure of latent code as well as better cover the hidden space with class uniformly. We conduct evaluations on 12 natural language understanding tasks. The results show that our SPC can effectively improve the performance of pre-trained language models for various classification and regression tasks. Experiments demonstrate that SPC can enhance the generalization capability, robustness to label noise, and clustering quality of output representations.
Dou Hu, Lingwei Wei, Yaxin Liu, Wei Zhou, Songlin Hu
3
1/4/2024 LLM-ARK: Knowledge Graph Reasoning Using Large Language Models via Deep Reinforcement Learning
With the evolution of pre-training methods, large language models (LLMs) have exhibited exemplary reasoning capabilities via prompt engineering. However, the absence of Knowledge Graph (KG) environment awareness and the challenge of engineering viable optimization mechanisms for intermediary reasoning processes, constrict the performance of LLMs on KG reasoning tasks compared to smaller models. We introduce LLM-ARK, a LLM grounded KG reasoning agent designed to deliver precise and adaptable predictions on KG paths. LLM-ARK utilizes Full Textual Environment (FTE) prompts to assimilate state information for each step-sized intelligence. Leveraging LLMs to richly encode and represent various types of inputs and integrate the knowledge graph further with path environment data, before making the final decision. Reframing the Knowledge Graph (KG) multi-hop inference problem as a sequential decision-making issue, we optimize our model using the Proximal Policy Optimization (PPO) online policy gradient reinforcement learning algorithm which allows the model to learn from a vast array of reward signals across diverse tasks and environments. We evaluate state-of-the-art LLM(GPT-4) and our method which using open-source models of varying sizes on OpenDialKG dataset. Our experiment shows that LLaMA7B-ARK provides excellent results with a performance rate of 48.75% for the target@1 evaluation metric, far exceeding the current state-of-the-art model by 17.64 percentage points. Meanwhile, GPT-4 accomplished a score of only 14.91%, further highlighting the efficacy and complexity of our methodology. Our code is available on GitHub for further access.
Yuxuan Huang
2
1/4/2024 ChatFDA: Medical Records Risk Assessment
In healthcare, the emphasis on patient safety and the minimization of medical errors cannot be overstated. Despite concerted efforts, many healthcare systems, especially in low-resource regions, still grapple with preventing these errors effectively. This study explores a pioneering application aimed at addressing this challenge by assisting caregivers in gauging potential risks derived from medical notes. The application leverages data from openFDA, delivering real-time, actionable insights regarding prescriptions. Preliminary analyses conducted on the MIMIC-III \cite{mimic} dataset affirm a proof of concept highlighting a reduction in medical errors and an amplification in patient safety. This tool holds promise for drastically enhancing healthcare outcomes in settings with limited resources. To bolster reproducibility and foster further research, the codebase underpinning our methodology is accessible on this https URL. This is a submission for the 30th HackAuton CMU.
M Tran, C Sun
2
Jupyter Notebook
1/4/2024 Robust Few-Shot Named Entity Recognition with Boundary Discrimination and Correlation Purification
Few-shot named entity recognition (NER) aims to recognize novel named entities in low-resource domains utilizing existing knowledge. However, the present few-shot NER models assume that the labeled data are all clean without noise or outliers, and there are few works focusing on the robustness of the cross-domain transfer learning ability to textual adversarial attacks in Few-shot NER. In this work, we comprehensively explore and assess the robustness of few-shot NER models under textual adversarial attack scenario, and found the vulnerability of existing few-shot NER models. Furthermore, we propose a robust two-stage few-shot NER method with Boundary Discrimination and Correlation Purification (BDCP). Specifically, in the span detection stage, the entity boundary discriminative module is introduced to provide a highly distinguishing boundary representation space to detect entity spans. In the entity typing stage, the correlations between entities and contexts are purified by minimizing the interference information and facilitating correlation generalization to alleviate the perturbations caused by textual adversarial attacks. In addition, we construct adversarial examples for few-shot NER based on public datasets Few-NERD and Cross-Dataset. Comprehensive evaluations on those two groups of few-shot NER datasets containing adversarial examples demonstrate the robustness and superiority of the proposed method.
Xiaojun Xue, Chunxia Zhang, Tianxiang Xu, Zhendong Niu
2
1/4/2024 Topic-VQ-VAE: Leveraging Latent Codebooks for Flexible Topic-Guided Document Generation
This paper introduces a novel approach for topic modeling utilizing latent codebooks from Vector-Quantized Variational Auto-Encoder~(VQ-VAE), discretely encapsulating the rich information of the pre-trained embeddings such as the pre-trained language model. From the novel interpretation of the latent codebooks and embeddings as conceptual bag-of-words, we propose a new generative topic model called Topic-VQ-VAE~(TVQ-VAE) which inversely generates the original documents related to the respective latent codebook. The TVQ-VAE can visualize the topics with various generative distributions including the traditional BoW distribution and the autoregressive image generation. Our experimental results on document analysis and image generation demonstrate that TVQ-VAE effectively captures the topic context which reveals the underlying structures of the dataset and supports flexible forms of document generation. Official implementation of the proposed TVQ-VAE is available at this https URL.
YoungJoon Yoo, Jongwon Choi
2
1/4/2024 ALMANACS: A Simulatability Benchmark for Language Model Explainability
How do we measure the efficacy of language model explainability methods? While many explainability methods have been developed, they are typically evaluated on bespoke tasks, preventing an apples-to-apples comparison. To help fill this gap, we present ALMANACS, a language model explainability benchmark. ALMANACS scores explainability methods on simulatability, i.e., how well the explanations improve behavior prediction on new inputs. The ALMANACS scenarios span twelve safety-relevant topics such as ethical reasoning and advanced AI behaviors; they have idiosyncratic premises to invoke model-specific behavior; and they have a train-test distributional shift to encourage faithful explanations. By using another language model to predict behavior based on the explanations, ALMANACS is a fully automated benchmark. We use ALMANACS to evaluate counterfactuals, rationalizations, attention, and Integrated Gradients explanations. Our results are sobering: when averaged across all topics, no explanation method outperforms the explanation-free control. We conclude that despite modest successes in prior work, developing an explanation method that aids simulatability in ALMANACS remains an open challenge.
Edmund Mills, Shiye Su, Stuart Russell, Scott Emmons
2
Python
1/4/2024 Conceptualizing Suicidal Behavior: Utilizing Explanations of Predicted Outcomes to Analyze Longitudinal Social Media Data
The COVID-19 pandemic has escalated mental health crises worldwide, with social isolation and economic instability contributing to a rise in suicidal behavior. Suicide can result from social factors such as shame, abuse, abandonment, and mental health conditions like depression, Post-Traumatic Stress Disorder (PTSD), Attention-Deficit/Hyperactivity Disorder (ADHD), anxiety disorders, and bipolar disorders. As these conditions develop, signs of suicidal ideation may manifest in social media interactions. Analyzing social media data using artificial intelligence (AI) techniques can help identify patterns of suicidal behavior, providing invaluable insights for suicide prevention agencies, professionals, and broader community awareness initiatives. Machine learning algorithms for this purpose require large volumes of accurately labeled data. Previous research has not fully explored the potential of incorporating explanations in analyzing and labeling longitudinal social media data. In this study, we employed a model explanation method, Layer Integrated Gradients, on top of a fine-tuned state-of-the-art language model, to assign each token from Reddit users' posts an attribution score for predicting suicidal ideation. By extracting and analyzing attributions of tokens from the data, we propose a methodology for preliminary screening of social media posts for suicidal ideation without using large language models during inference.
Van Minh Nguyen, Nasheen Nur, William Stern, Thomas Mercer, Chiradeep Sen, Siddhartha Bhattacharyya, Victor Tumbiolo, Seng Jhing Goh
2
Jupyter Notebook
1/4/2024 From Ultra-Fine to Fine: Fine-tuning Ultra-Fine Entity Typing Models to Fine-grained
For the task of fine-grained entity typing (FET), due to the use of a large number of entity types, it is usually considered too costly to manually annotating a training dataset that contains an ample number of examples for each type. A common way to address this problem is to use distantly annotated training data that contains incorrect labels. However, the performance of models trained solely with such data can be limited by the errors in the automatic annotation. Recently, there are a few approaches that no longer follow this conventional way. But without using sufficient direct entity typing supervision may also cause them to yield inferior performance. In this paper, we propose a new approach that can avoid the need of creating distantly labeled data whenever there is a new type schema. We first train an entity typing model that have an extremely board type coverage by using the ultra-fine entity typing data. Then, when there is a need to produce a model for a newly designed fine-grained entity type schema. We can simply fine-tune the previously trained model with a small number of examples annotated under this schema. Experimental results show that our approach achieves outstanding performance for FET under the few-shot setting. It can also outperform state-of-the-art weak supervision based methods after fine-tuning the model with only a small size manually annotated training set.
Hongliang Dai, Ziqian Zeng
2
Python
1/4/2024 Improving Biomedical Entity Linking with Retrieval-enhanced Learning
Biomedical entity linking (BioEL) has achieved remarkable progress with the help of pre-trained language models. However, existing BioEL methods usually struggle to handle rare and difficult entities due to long-tailed distribution. To address this limitation, we introduce a new scheme $k$NN-BioEL, which provides a BioEL model with the ability to reference similar instances from the entire training corpus as clues for prediction, thus improving the generalization capabilities. Moreover, we design a contrastive learning objective with dynamic hard negative sampling (DHNS) that improves the quality of the retrieved neighbors during inference. Extensive experimental results show that $k$NN-BioEL outperforms state-of-the-art baselines on several datasets.
Zhenxi Lin, Ziheng Zhang, Xian Wu, Yefeng Zheng
2
1/4/2024 Designing LLM Chains by Adapting Techniques from Crowdsourcing Workflows
LLM chains enable complex tasks by decomposing work into a sequence of sub-tasks. Crowdsourcing workflows similarly decompose complex tasks into smaller tasks for human crowdworkers. Chains address LLM errors analogously to the way crowdsourcing workflows address human error. To characterize opportunities for LLM chaining, we survey 107 papers across the crowdsourcing and chaining literature to construct a design space for chain development. The design space connects an LLM designer's objectives to strategies they can use to achieve those objectives, and tactics to implement each strategy. To explore how techniques from crowdsourcing may apply to chaining, we adapt crowdsourcing workflows to implement LLM chains across three case studies: creating a taxonomy, shortening text, and writing a short story. From the design space and our case studies, we identify which techniques transfer from crowdsourcing to LLM chaining and raise implications for future research and development.
Madeleine Grunde-McLaughlin, Michelle S. Lam, Ranjay Krishna, Daniel S. Weld, Jeffrey Heer
2
1/4/2024 Designing Guiding Principles for NLP for Healthcare: A Case Study of Maternal Health
Objective: An ethical framework for the use of large language models (LLMs) is urgently needed to shape how natural language processing (NLP) tools are used for healthcare applications. Drawing directly from the voices of those most affected, we propose a set of guiding principles for the use of NLP in healthcare, with examples based on applications in maternal health. Materials and Methods: We led an interactive session centered on an LLM-based chatbot demonstration during a full-day workshop with 39 participants, and additionally surveyed 30 healthcare workers and 30 birthing people about their values, needs, and perceptions of AI and LLMs. We conducted quantitative and qualitative analyses of the interactive discussions to consolidate our findings into a set of guiding principles. Results: Using the case study of maternal health, we propose nine principles for ethical use of LLMs, grouped into three categories: (i) contextual significance, (ii) measurements, and (iii) who/what is valued. We describe rationales underlying these principles and provide practical advice. Discussion: Healthcare faces existing challenges including the balance of power in clinician-patient relationships, systemic health disparities, historical injustices, and economic constraints. Our principles serve as a framework for surfacing key considerations when deploying LLMs in medicine, as well as providing a methodological pattern for other researchers to follow. Conclusion: This set of principles can serve as a resource to practitioners working on maternal health and other healthcare fields to emphasize the importance of technical nuance, historical context, and inclusive design when developing LLMs for use in clinical settings.
Maria Antoniak, Aakanksha Naik, Carla S. Alvarado, Lucy Lu Wang, Irene Y. Chen
2
1/4/2024 Simul-LLM: A Framework for Exploring High-Quality Simultaneous Translation with Large Language Models
Large language models (LLMs) with billions of parameters and pretrained on massive amounts of data are now capable of near or better than state-of-the-art performance in a variety of downstream natural language processing tasks. Neural machine translation (NMT) is one such task that LLMs have been applied to with great success. However, little research has focused on applying LLMs to the more difficult subset of NMT called simultaneous translation (SimulMT), where translation begins before the entire source context is available to the model. In this paper, we address key challenges facing LLMs fine-tuned for SimulMT, validate classical SimulMT concepts and practices in the context of LLMs, explore adapting LLMs that are fine-tuned for NMT to the task of SimulMT, and introduce Simul-LLM, the first open-source fine-tuning and evaluation pipeline development framework for LLMs focused on SimulMT.
Victor Agostinelli, Max Wild, Matthew Raffel, Kazi Ahmed Asif Fuad, Lizhong Chen
2
Python
1/4/2024 MATK: The Meme Analytical Tool Kit
The rise of social media platforms has brought about a new digital culture called memes. Memes, which combine visuals and text, can strongly influence public opinions on social and cultural issues. As a result, people have become interested in categorizing memes, leading to the development of various datasets and multimodal models that show promising results in this field. However, there is currently a lack of a single library that allows for the reproduction, evaluation, and comparison of these models using fair benchmarks and settings. To fill this gap, we introduce the Meme Analytical Tool Kit (MATK), an open-source toolkit specifically designed to support existing memes datasets and cutting-edge multimodal models. MATK aims to assist researchers and engineers in training and reproducing these multimodal models for meme classification tasks, while also providing analysis techniques to gain insights into their strengths and weaknesses. To access MATK, please visit \url{this https URL}.
Ming Shan Hee, Aditi Kumaresan, Nguyen Khoi Hoang, Nirmalendu Prakash, Rui Cao, Roy Ka-Wei Lee
2
Python
1/4/2024 Exploring Automatic Text Simplification of German Narrative Documents
In this paper, we apply transformer-based Natural Language Generation (NLG) techniques to the problem of text simplification. Currently, there are only a few German datasets available for text simplification, even fewer with larger and aligned documents, and not a single one with narrative texts. In this paper, we explore to which degree modern NLG techniques can be applied to German narrative text simplifications. We use Longformer attention and a pre-trained mBART model. Our findings indicate that the existing approaches for German are not able to solve the task properly. We conclude on a few directions for future research to address this problem.
Thorben Schomacker, Tillmann Donicke, Marina Tropmann-Frick
2
Python
1/4/2024 Retrieval-augmented Multilingual Knowledge Editing
Knowledge represented in Large Language Models (LLMs) is quite often incorrect and can also become obsolete over time. Updating knowledge via fine-tuning is computationally resource-hungry and not reliable, and so knowledge editing (KE) has developed as an effective and economical alternative to inject new knowledge or to fix factual errors in LLMs. Although there has been considerable interest in this area, current KE research exclusively focuses on the monolingual setting, typically in English. However, what happens if the new knowledge is supplied in one language, but we would like to query the LLM in a different language? To address the problem of multilingual knowledge editing, we propose Retrieval-augmented Multilingual Knowledge Editor (ReMaKE) to update new knowledge in LLMs. ReMaKE can perform model-agnostic knowledge editing in multilingual settings. ReMaKE concatenates the new knowledge retrieved from a multilingual knowledge base with prompts. Our experimental results show that ReMaKE outperforms baseline knowledge editing methods by a significant margin and is the first KE method to work in a multilingual setting. We provide our multilingual knowledge editing dataset (MzsRE) in 12 languages, which along with code, and additional project information is available at this https URL.
Weixuan Wang, Barry Haddow, Alexandra Birch
2
Python
1/4/2024 ToViLaG: Your Visual-Language Generative Model is Also An Evildoer
Warning: this paper includes model outputs showing offensive content. Recent large-scale Visual-Language Generative Models (VLGMs) have achieved unprecedented improvement in multimodal image/text generation. However, these models might also generate toxic content, e.g., offensive text and pornography images, raising significant ethical risks. Despite exhaustive studies on toxic degeneration of language models, this problem remains largely unexplored within the context of visual-language generation. This work delves into the propensity for toxicity generation and susceptibility to toxic data across various VLGMs. For this purpose, we built ToViLaG, a dataset comprising 32K co-toxic/mono-toxic text-image pairs and 1K innocuous but evocative text that tends to stimulate toxicity. Furthermore, we propose WInToRe, a novel toxicity metric tailored to visual-language generation, which theoretically reflects different aspects of toxicity considering both input and output. On such a basis, we benchmarked the toxicity of a diverse spectrum of VLGMs and discovered that some models do more evil than expected while some are more vulnerable to infection, underscoring the necessity of VLGMs detoxification. Therefore, we develop an innovative bottleneck-based detoxification method. Our method could reduce toxicity while maintaining comparable generation quality, providing a promising initial solution to this line of research.
Xinpeng Wang, Xiaoyuan Yi, Han Jiang, Shanlin Zhou, Zhihua Wei, Xing Xie
2
Python
1/4/2024 Learn or Recall? Revisiting Incremental Learning with Pre-trained Language Models
Incremental Learning (IL) has been a long-standing problem in both vision and Natural Language Processing (NLP) communities. In recent years, as Pre-trained Language Models (PLMs) have achieved remarkable progress in various NLP downstream tasks, utilizing PLMs as backbones has become a common practice in recent research of IL in NLP. Most assume that catastrophic forgetting is the biggest obstacle to achieving superior IL performance and propose various techniques to overcome this issue. However, we find that this assumption is problematic. Specifically, we revisit more than 20 methods on four classification tasks (Text Classification, Intent Classification, Relation Extraction, and Named Entity Recognition) under the two most popular IL settings (Class-Incremental and Task-Incremental) and reveal that most of them severely underestimate the inherent anti-forgetting ability of PLMs. Based on the observation, we propose a frustratingly easy method called SEQ* for IL with PLMs. The results show that SEQ* has competitive or superior performance compared to state-of-the-art (SOTA) IL methods and requires considerably less trainable parameters and training time. These findings urge us to revisit the IL with PLMs and encourage future studies to have a fundamental understanding of the catastrophic forgetting in PLMs. The data, code and scripts are publicly available at this https URL.
Junhao Zheng, Shengjie Qiu, Qianli Ma
2
Python
1/4/2024 Argue with Me Tersely: Towards Sentence-Level Counter-Argument Generation
Counter-argument generation -- a captivating area in computational linguistics -- seeks to craft statements that offer opposing views. While most research has ventured into paragraph-level generation, sentence-level counter-argument generation beckons with its unique constraints and brevity-focused challenges. Furthermore, the diverse nature of counter-arguments poses challenges for evaluating model performance solely based on n-gram-based metrics. In this paper, we present the ArgTersely benchmark for sentence-level counter-argument generation, drawing from a manually annotated dataset from the ChangeMyView debate forum. We also propose Arg-LlaMA for generating high-quality counter-argument. For better evaluation, we trained a BERT-based evaluator Arg-Judge with human preference data. We conducted comparative experiments involving various baselines such as LlaMA, Alpaca, GPT-3, and others. The results show the competitiveness of our proposed framework and evaluator in counter-argument generation tasks. Code and data are available at this https URL.
Jiayu Lin, Rong Ye, Meng Han, Qi Zhang, Ruofei Lai, Xinyu Zhang, Zhao Cao, Xuanjing Huang, Zhongyu Wei
1
Python
1/4/2024 How to Determine the Most Powerful Pre-trained Language Model without Brute Force Fine-tuning? An Empirical Survey
Transferability estimation has been attached to great attention in the computer vision fields. Researchers try to estimate with low computational cost the performance of a model when transferred from a source task to a given target task. Considering the effectiveness of such estimations, the communities of natural language processing also began to study similar problems for the selection of pre-trained language models. However, there is a lack of a comprehensive comparison between these estimation methods yet. Also, the differences between vision and language scenarios make it doubtful whether previous conclusions can be established across fields. In this paper, we first conduct a thorough survey of existing transferability estimation methods being able to find the most suitable model, then we conduct a detailed empirical study for the surveyed methods based on the GLUE benchmark. From qualitative and quantitative analyses, we demonstrate the strengths and weaknesses of existing methods and show that H-Score generally performs well with superiorities in effectiveness and efficiency. We also outline the difficulties of consideration of training details, applicability to text generation, and consistency to certain metrics which shed light on future directions.
Jun Bai, Xiaofeng Zhang, Chen Li, Hanhua Hong, Xi Xu, Chenghua Lin, Wenge Rong
1
Jupyter Notebook
1/4/2024 Grammatical information in BERT sentence embeddings as two-dimensional arrays
Sentence embeddings induced with various transformer architectures encode much semantic and syntactic information in a distributed manner in a one-dimensional array. We investigate whether specific grammatical information can be accessed in these distributed representations. Using data from a task developed to test rule-like generalizations, our experiments on detecting subject-verb agreement yield several promising results. First, we show that while the usual sentence representations encoded as one-dimensional arrays do not easily support extraction of rule-like regularities, a two-dimensional reshaping of these vectors allows various learning architectures to access such information. Next, we show that various architectures can detect patterns in these two-dimensional reshaped sentence embeddings and successfully learn a model based on smaller amounts of simpler training data, which performs well on more complex test data. This indicates that current sentence embeddings contain information that is regularly distributed, and which can be captured when the embeddings are reshaped into higher dimensional arrays. Our results cast light on representations produced by language models and help move towards developing few-shot learning approaches.
Vivi Nastase, Paola Merlo
1
Python
1/4/2024 Spectral Prompt Tuning:Unveiling Unseen Classes for Zero-Shot Semantic Segmentation
Recently, CLIP has found practical utility in the domain of pixel-level zero-shot segmentation tasks. The present landscape features two-stage methodologies beset by issues such as intricate pipelines and elevated computational costs. While current one-stage approaches alleviate these concerns and incorporate Visual Prompt Training (VPT) to uphold CLIP's generalization capacity, they still fall short in fully harnessing CLIP's potential for pixel-level unseen class demarcation and precise pixel predictions. To further stimulate CLIP's zero-shot dense prediction capability, we propose SPT-SEG, a one-stage approach that improves CLIP's adaptability from image to pixel. Specifically, we initially introduce Spectral Prompt Tuning (SPT), incorporating spectral prompts into the CLIP visual encoder's shallow layers to capture structural intricacies of images, thereby enhancing comprehension of unseen classes. Subsequently, we introduce the Spectral Guided Decoder (SGD), utilizing both high and low-frequency information to steer the network's spatial focus towards more prominent classification features, enabling precise pixel-level prediction outcomes. Through extensive experiments on two public datasets, we demonstrate the superiority of our method over state-of-the-art approaches, performing well across all classes and particularly excelling in handling unseen classes. Code is available at:this https URL.
Wenhao Xu, Rongtao Xu, Changwei Wang, Shibiao Xu, Li Guo, Man Zhang, Xiaopeng Zhang
1
Python
1/4/2024 Multi-Defendant Legal Judgment Prediction via Hierarchical Reasoning
Multiple defendants in a criminal fact description generally exhibit complex interactions, and cannot be well handled by existing Legal Judgment Prediction (LJP) methods which focus on predicting judgment results (e.g., law articles, charges, and terms of penalty) for single-defendant cases. To address this problem, we propose the task of multi-defendant LJP, which aims to automatically predict the judgment results for each defendant of multi-defendant cases. Two challenges arise with the task of multi-defendant LJP: (1) indistinguishable judgment results among various defendants; and (2) the lack of a real-world dataset for training and evaluation. To tackle the first challenge, we formalize the multi-defendant judgment process as hierarchical reasoning chains and introduce a multi-defendant LJP method, named Hierarchical Reasoning Network (HRN), which follows the hierarchical reasoning chains to determine criminal relationships, sentencing circumstances, law articles, charges, and terms of penalty for each defendant. To tackle the second challenge, we collect a real-world multi-defendant LJP dataset, namely MultiLJP, to accelerate the relevant research in the future. Extensive experiments on MultiLJP verify the effectiveness of our proposed HRN.
Yougang Lyu, Jitai Hao, Zihan Wang, Kai Zhao, Shen Gao, Pengjie Ren, Zhumin Chen, Fang Wang, Zhaochun Ren
1
Python
1/4/2024 Coreference Graph Guidance for Mind-Map Generation
Mind-map generation aims to process a document into a hierarchical structure to show its central idea and branches. Such a manner is more conducive to understanding the logic and semantics of the document than plain text. Recently, a state-of-the-art method encodes the sentences of a document sequentially and converts them to a relation graph via sequence-to-graph. Though this method is efficient to generate mind-maps in parallel, its mechanism focuses more on sequential features while hardly capturing structural information. Moreover, it's difficult to model long-range semantic relations. In this work, we propose a coreference-guided mind-map generation network (CMGN) to incorporate external structure knowledge. Specifically, we construct a coreference graph based on the coreference semantic relationship to introduce the graph structure information. Then we employ a coreference graph encoder to mine the potential governing relations between sentences. In order to exclude noise and better utilize the information of the coreference graph, we adopt a graph enhancement module in a contrastive learning manner. Experimental results demonstrate that our model outperforms all the existing methods. The case study further proves that our model can more accurately and concisely reveal the structure and semantics of a document. Code and data are available at this https URL.
Zhuowei Zhang, Mengting Hu, Yinhao Bai, Zhen Zhang
1
Gherkin
1/4/2024 Dissecting vocabulary biases datasets through statistical testing and automated data augmentation for artifact mitigation in Natural Language Inference
In recent years, the availability of large-scale annotated datasets, such as the Stanford Natural Language Inference and the Multi-Genre Natural Language Inference, coupled with the advent of pre-trained language models, has significantly contributed to the development of the natural language inference domain. However, these crowdsourced annotated datasets often contain biases or dataset artifacts, leading to overestimated model performance and poor generalization. In this work, we focus on investigating dataset artifacts and developing strategies to address these issues. Through the utilization of a novel statistical testing procedure, we discover a significant association between vocabulary distribution and text entailment classes, emphasizing vocabulary as a notable source of biases. To mitigate these issues, we propose several automatic data augmentation strategies spanning character to word levels. By fine-tuning the ELECTRA pre-trained language model, we compare the performance of boosted models with augmented data against their baseline counterparts. The experiments demonstrate that the proposed approaches effectively enhance model accuracy and reduce biases by up to 0.66% and 1.14%, respectively.
Dat Thanh Nguyen
1
Jupyter Notebook
1/4/2024 Response Enhanced Semi-Supervised Dialogue Query Generation
Leveraging vast and continually updated knowledge from the Internet has been considered an important ability for a dialogue system. Therefore, the dialogue query generation task is proposed for generating search queries from dialogue histories, which will be submitted to a search engine for retrieving relevant websites on the Internet. In this regard, previous efforts were devoted to collecting conversations with annotated queries and training a query producer (QP) via standard supervised learning. However, these studies still face the challenges of data scarcity and domain adaptation. To address these issues, in this paper, we propose a semi-supervised learning framework -- SemiDQG, to improve model performance with unlabeled conversations. Based on the observation that the search query is typically related to the topic of dialogue response, we train a response-augmented query producer (RA) to provide rich and effective training signals for QP. We first apply a similarity-based query selection strategy to select high-quality RA-generated pseudo queries, which are used to construct pseudo instances for training QP and RA. Then, we adopt the REINFORCE algorithm to further enhance QP, with RA-provided rewards as fine-grained training signals. Experimental results and in-depth analysis of three benchmarks show the effectiveness of our framework in cross-domain and low-resource scenarios. Particularly, SemiDQG significantly surpasses ChatGPT and competitive baselines. Our code is available at \url{this https URL}.
Jianheng Huang, Ante Wang, Linfeng Gao, Linfeng Song, Jinsong Su
1
1/4/2024 Can Transformers Learn Sequential Function Classes In Context?
In-context learning (ICL) has revolutionized the capabilities of transformer models in NLP. In our project, we extend the understanding of the mechanisms underpinning ICL by exploring whether transformers can learn from sequential, non-textual function class data distributions. We introduce a novel sliding window sequential function class and employ toy-sized transformers with a GPT-2 architecture to conduct our experiments. Our analysis indicates that these models can indeed leverage ICL when trained on non-textual sequential function classes. Additionally, our experiments with randomized y-label sequences highlights that transformers retain some ICL capabilities even when the label associations are obfuscated. We provide evidence that transformers can reason with and understand sequentiality encoded within function classes, as reflected by the effective learning of our proposed tasks. Our results also show that the performance deteriorated with increasing randomness in the labels, though not to the extent one might expect, implying a potential robustness of learned sequentiality against label noise. Future research may want to look into how previous explanations of transformers, such as induction heads and task vectors, relate to sequentiality in ICL in these toy examples. Our investigation lays the groundwork for further research into how transformers process and perceive sequential data.
Ryan Campbell, Emma Guo, Evan Hu, Reya Vir, Ethan Hsiao
1
Jupyter Notebook
1/4/2024 TMID: A Comprehensive Real-world Dataset for Trademark Infringement Detection in E-Commerce
Annually, e-commerce platforms incur substantial financial losses due to trademark infringements, making it crucial to identify and mitigate potential legal risks tied to merchant information registered to the platforms. However, the absence of high-quality datasets hampers research in this area. To address this gap, our study introduces TMID, a novel dataset to detect trademark infringement in merchant registrations. This is a real-world dataset sourced directly from Alipay, one of the world's largest e-commerce and digital payment platforms. As infringement detection is a legal reasoning task requiring an understanding of the contexts and legal rules, we offer a thorough collection of legal rules and merchant and trademark-related contextual information with annotations from legal experts. We ensure the data quality by performing an extensive statistical analysis. Furthermore, we conduct an empirical study on this dataset to highlight its value and the key challenges. Through this study, we aim to contribute valuable resources to advance research into legal compliance related to trademark infringement within the e-commerce sphere. The dataset is available at this https URL .
Tongxin Hu, Zhuang Li, Xin Jin, Lizhen Qu, Xin Zhang
1
1/4/2024 TaCo: Targeted Concept Removal in Output Embeddings for NLP via Information Theory and Explainability
The fairness of Natural Language Processing (NLP) models has emerged as a crucial concern. Information theory indicates that to achieve fairness, a model should not be able to predict sensitive variables, such as gender, ethnicity, and age. However, information related to these variables often appears implicitly in language, posing a challenge in identifying and mitigating biases effectively. To tackle this issue, we present a novel approach that operates at the embedding level of an NLP model, independent of the specific architecture. Our method leverages insights from recent advances in XAI techniques and employs an embedding transformation to eliminate implicit information from a selected variable. By directly manipulating the embeddings in the final layer, our approach enables a seamless integration into existing models without requiring significant modifications or retraining. In evaluation, we show that the proposed post-hoc approach significantly reduces gender-related associations in NLP models while preserving the overall performance and functionality of the models. An implementation of our method is available: this https URL
Fanny Jourdan, Louis Bethune, Agustin Picard, Laurent Risser, Nicholas Asher
1
Jupyter Notebook
1/4/2024 GTA: Gated Toxicity Avoidance for LM Performance Preservation
Caution: This paper includes offensive words that could potentially cause unpleasantness. The fast-paced evolution of generative language models such as GPT-4 has demonstrated outstanding results in various NLP generation tasks. However, due to the potential generation of offensive words related to race or gender, various Controllable Text Generation (CTG) methods have been proposed to mitigate the occurrence of harmful words. However, existing CTG methods not only reduce toxicity but also negatively impact several aspects of the language model's generation performance, including topic consistency, grammar, and perplexity. This paper explores the limitations of previous methods and introduces a novel solution in the form of a simple Gated Toxicity Avoidance (GTA) that can be applied to any CTG method. We also evaluate the effectiveness of the proposed GTA by comparing it with state-of-the-art CTG methods across various datasets. Our findings reveal that gated toxicity avoidance efficiently achieves comparable levels of toxicity reduction to the original CTG methods while preserving the generation performance of the language model.
Heegyu Kim, Hyunsouk Cho
1
Jupyter Notebook
1/4/2024 Toxic language detection: a systematic survey of Arabic datasets
This paper offers a comprehensive survey of Arabic datasets focused on online toxic language. We systematically gathered a total of 49 available datasets and their corresponding papers and conducted a thorough analysis, considering 16 criteria across three primary dimensions: content, annotation process, and reusability. This analysis enabled us to identify existing gaps and make recommendations for future research works.
Imene Bensalem, Paolo Rosso, Hanane Zitouni
1